
13th EAEEIE Annual Conference on Innovations in Education for Electrical and Information Engineering (EIE),
York 8-10April 2002, CD-ROM, ISBN-85911-008-8, paper 71EAEEIE2002.pdf

Teaching object oriented software engineering
with UML

Zbigniew MROZEK1,Bogumiła MROZEK1, Osei ADJEI2

1Cracow University of Technology (Politechnika Krakowska) ,
 PL 31-155 KRAKÓW,Poland, Warszawska 24,

zbigniew.mrozek@pk.edu.pl, bmrozek@usk.pk.edu.pl
2University of Luton, Park Square, LUTON, Bedfordshire, LU1 3JU, England,

osei.adjei@luton.ac.uk;

Abstract

The Unified Modelling Language (UML) is
a language that helps to visualize, design
and document models of software
systems. It represents a collection of the
best engineering practices that have
proven successful in modelling large and
complex systems. UML is widely used in
designing large and reliable software
systems required by banks and other
corporate bodies. Students are
encouraged to work in groups to learn the
terminology, notation and use of UML and
by so doing learn the task of
communicating with clients and with other
members of the project team. This
effectively leads to the students’
understanding of main factors associated
in the project's success or failure and
complexities involved in software
development and project management.

Keywords
UML, software development, project
management, CASE tool, MATLAB,
Simulink, Stateflow diagram

1 Introduction.
A university professor should consider
some quality objectives [5] according to
the mission and circumstances of the
educational institution that he/she belongs
to. Such objectives must include:

1. student satisfaction consistent

with professional standards,
2. continuous improvement of

service,

3. giving consideration to the
requirements of industry,
commerce and the public sector,

4. efficiency in providing the service.

On the other hand, he/she must be able to
identify clear opportunities for the delivery
and improvement of quality lectures. This
means that he/she must give interesting,
useful, clear and state of art lectures on a
chosen topic. This is very important when
teaching UML programming since fast and
continuous progress in extending UML
specification is to be targeted. The current
UML version specification is 1.4 and
proposals for version 2.0 are under
discussion. Therefore, an intended lecturer
for a UML course must verify related
materials (handouts, slides, PowerPoint
presentations) and books before and
during the semester in which the subject is
being taught.

2 What is UML language
The Unified Modeling Language provides
the means to visualize, document and
model software applications before coding.
It is independent of any programming
language that will be used for coding the
final application software. UML represents
a collection of the best engineering
practices that have proven successful in
the modeling of large and complex
systems [1-4, 6, 8, 10]. Many successful
attempts have been considered to extend
the application of UML to areas beyond
informatics [6,8]. The advantage of UML
over other systems analysis tools is that, it
reveals gaps and inconsistencies in the
requirement's specification at very early

stages of the design as well as providing
the ease of understanding and the ability
to modify visual modeling diagrams.

UML is derived from three other products:
OMT (object modelling technique) by
James Rumbaugh, Booch method by
Grady Booch and OOSE (object oriented
software engineering) by Ivar Jacobson.
Some ideas of SDL (Specification and
Design Language, 1976 CCITT) and E-R
(Entity Relationship) model of databases
are also taken into account. Since its
introduction, UML had undergone
continuous improvements several times
until version 1.3 was proposed as the
accepted standard in year 1999 [4].

Any complex system can be presented by
a set of nearly independent views of a
model. A single view is not sufficient. Use
case and class diagrams, an example of
which is shown in figure 1 (these are
described later), are used in all UML
supported projects. The choice of
diagrams created depends on how a
problem is to be solved. In addition to use
case and class diagrams one can create
behavioural diagrams:

• state-chart diagram
• activity diagram
• interaction diagrams: sequence

and collaboration
and implementation diagrams:

• component diagram
• deployment diagram

It is interesting to note that some CASE
tools supporting UML design may also
offer their own extensions and diagrams
which are not included in current UML
specification [11-12].

2.1 Study program quality plan
Prerequisites for a UML module must
include some practical knowledge of any

object oriented language such as Java or
C++. The balance of knowledge between
C++, Java and software packages (e.g.
MATLAB) and UML is an important factor
to be taken into consideration when
planning a curricula. A modular credit
scheme with partial or full freedom in
choosing modules may be essential to
attract students and to get feedback on
actual students’ preferences [5]. The
module should be validated using officially
approved validation procedures. Once
objectives are agreed, proper activities
should be defined and documented.

The objective of a UML module is to
provide the student with the visualization
and understanding of software
development skills that are achieved by
using modern CASE tools. Before the
module starts, some resources such as
free and almost unlimited access to
computer laboratory and installed CASE
software must be guaranteed or made
available to students. Regardless of these
resources, students registered on the UML
module may be asked to seek alternative
CASE software advertised on the Internet.
Students may install evaluation copies of
such software and use them within limited
period of time. Comparing different tools
and discussing different approaches of
solving problems help students to achieve
skills in UML and to understand limits
supported by different tools.

2.2 Class and object diagram.
When use cases or scenarios are
analyzed, object activities are described
although classes are not defined at all.
This may be very strange to students with
some background knowledge in C++ or
Java languages and who, in general,
accept that an object is an instance of
class. Here in visual programming using

Figure 1: Use Case Diagram

UML a class may be defined and drawn
later, as generalization of chosen similar
objects. A class diagram may contain
classes and objects. If there is no other
class in such a diagram, the diagram is
named an object diagram.

There is no officially recognized
methodology to identify object and
classes. Therefore, different programmers
may define a different set of classes and
objects for the same problem.

It is not a good idea to try and design a
complete class or object diagram when
scenarios and use cases are ready. This is
because some changes in object
hierarchy, naming, methods and attributes
may be inevitable, when other diagrams
are designed. This is true especially when
sequences or state diagrams are under
preparation. In general, when a good case
tool supporting UML programming is used,
the class diagram is corrected

automatically when objects or class
names, types, methods, attributes or
parameters are changed in other
diagrams.

2.3 Behavioural diagrams
There is no need to use all existing types
of behavioral diagrams in applications.
That is, it is sufficient to have a deep
knowledge of a small subset of carefully
chosen diagrams. As Brugge [3] points
out; “You can model 80% of most
problems by using about 20% UML”. It
means that a UML module should present
only a part of carefully selected elements
of the UML language. In the author’s
opinion, use case diagrams, scenarios,
class and object diagrams, two or three
behavioural diagrams (e.g. sequence and
state), component and deployment
diagrams, OCL (Object Constraint
Language) should be considered when
designing a UML module.

show_time

show_ alarm

show_stoper

time_secondFlash

time__hourFlash

time_minuteFlash

showAlarm_hour_flash showAlarm_minuteFlash

STARTstoper STOPstoper

Time_secondFlash

zegar

 press[p1]/

 press[p1]/

 press[p1]/

 press[p2]/
 press[p2]/

 press[p2]/ press[p2]/

 press[p3]/ get(hour)

 press[p3]/ get(hour)
 press[p3]/ dodaj(minuta}

 press[p3]/
 press[p3]/

 press[p2]/ StartStopDISPLAY

 press[p3]/

 press[p2]/
 press[p3]/ initSeconds

 press[p1]/
 press[p1]/

 press[p2]/ clearStoper

 press[p1]/

 press[p1]/
 press[p1]/

 press[p1]/

 press[p1]/

 press[p1]/

«Create»/

 press[p3]/ add(minute)

Figure 2: State Diagram example

2.3.1 Sequence diagram
In the preparation of sequence diagrams
one can verify requirement’s specification

and scenarios against omissions and
inconsistencies. Similarly, one can verify
existing classes and objects, in case class
diagrams have been created before.
Missing classes and objects should be

defined at this stage. Methods and
attributes defined here should be identified
automatically by the CASE package and
used immediately to update existing
classes and objects.

2.3.2 State diagram
If an object's behavior is more compli-
cated, a sequence diagram is not suitable
and thus a state-chart diagram, shown in
figure 2, should be used. By using a
brainstorm session, a group of students
may:
• identify major categories of possible

events, including actors, methods and
procedures involved,

• define the effect of each condition or
event clearly and concisely, and

• begin to construct the diagram using a
box to describe new state and
transitions to connect different states.

When building diagrams, students will
verify if already defined objects are useful
for tasks and services described with the
new state or sequence diagrams. They
have to decide what methods (its name,
type and parameters) and attributes (its
name and type) are needed. Most CASE
tools keep a database with objects and
attributes defined within the project. In
case of any inconsistency, the student is
immediately alerted to correct the error.
This speeds up programming and helps to
avoid many errors

2.4 Brainstorming
Brainstorming is used to identify possible
solutions to problems and potential
opportunities for improvements. This
technique is used for tapping creative
thinking of a team to generate and clarify a
list of ideas, problems and issues. We use
brainstorming to find all use cases and
actors necessary to build a use case
diagram. Brainstorming is very useful to
identify states and transitions for state
diagram. There are two phases in the
brainstorming procedure:
• during the generation phase

- the purpose (target) of the
brainstorming session is clearly
stated

- each team member takes a turn in
a sequence, stating a single idea

- where possible, new ideas are
build on others ideas

- all ideas are recorded and should
be seen by all the participants
(using whiteboard or overhead is
recommended)

- at this stage, ideas are neither
criticized nor discussed

- the process continues until no
more ideas are generated.

• the clarification phase
- list of ideas should be reviewed to

make sure that each person
understands all the ideas

- evaluation of ideas will occur after
the brainstorm session is
completed.

2.5 Presentation tools
Power Point is a very useful tool at any
level of the preparation and
implementation phases. Netscape and
Internet Explorer (using HTML language)
are completely free for educational
purposes and seem to be even better than
MS Word for documenting, network
communication and data collection
phases. Power Point is widely used as
presentation tool at any level of the
preparation and implementation phases.
HTML presentation may be used as well.
MATLAB (with SIMULINK and
STATEFLOW tools) can be used for the
visualization and animation of state
diagrams.

3 Conclusions
The UML has the advantage that it reveals
gaps and inconsistencies in the
requirement’s specification at earlier
stages of software design, as well as
making it easy to understand and modify
visual modelling diagrams. Unification and
precision of notation is important for large
and interdisciplinary projects. UML tools
keep track of used class and object
names, its attributes and methods. Users
may transfer already defined classes and
other elements between different diagrams
and reuse them. This accelerates work

progress and helps to keep all parts of
project in a consistent manner.

Using commercially available specialised
CAD tools and CASE packages visual
UML programming may greatly improve
productivity of a software design team by
cutting down development time and
improving final product quality (in
accordance with ISO 9000 standards).
UML is a dedicated software design
language for large software projects, and
its applicability can be extended to other
domains.

4 Acknowledgements:
Authors wish to express their gratitude to
ARTiSAN Software Tools, Inc (GB);
Rational Software Corporation (USA) and
Premium Technology Sp zoo (Poland) for
free evaluation license for following
software: Real-time Studio, Rational Rose
Suite and Rational Rose RT.

References

 [1] Arief L.B, Speirs N.A, Automatic generation of

distributed system simulations from UML in
Modelling and Simulation, A tool for next
millennium, 13-th European Simulation
Multiconference, Vol.II pp 507-509, Warsaw,
June 1-4,1999.

[2] Booch, G. Rumbaugh, J. Jacobson I The
Unified Modelling Language User Guide,
Addison Wesley, 1999

[3] Bruegge B, Dutoit A, Object-Oriented Software
Engineering: Conquering Complex and
Changing Systems, Prentice-Hall, 1999.

[4] Kobryn Cris, UML 2001 A Standardization
Odyssey, Communications of the ACM
Vol.42,No.10, pp.28-37, October 1999.

[5] Mrozek Z , Adjei Osei, Mansour Ali Quality
Assurance In Higher Education, Proc. of 4-th
Int. Conf. Computer Aided Engineering
Education, ed. M. Chrzanowski, E.Nawarecki
(CAEE'97), vol.2, pp.156-164, AGH Krakow.

[6] Mrozek Z, UML as integration tool for design
of the mechatronic system, in Second
Workshop on Robot Motion and Control, pp
189-194, ed. Kozlowski K, Galicki M, Tcho

�
 K,

Oct 18-20, 2001, Bukowy Dworek, Poland.
[7] Mrozek B,. Mrozek Z, MATLAB 6, poradnik

u� ytkownika, ISBN 83-7101-449-X, PLJ
Warszawa 2001.

[8] Mrozek Z, Metodyka wykorzystania UML w
projektowaniu mechatronicznym, pp.25-28,
Pomiary Automatyka Kontrola 1, 2002.

[9] OMG Unified Modeling Language
Specification (draft), Version 1.4, February
2001. and other OMG (Object Management
Group) standards, http://www.omg.org:

[10] Pristley, Practical object-oriented design with
UML, 2000.

[11] Rational Rose Suite, Rational Rose RT and
other software from Rational Software
Corporation.

[12] Real-time Studio, ARTiSAN Software Tools,
Inc. July 2001.

