Applying Risk Management to Support SLA Provisioning

G. Birkenheuer¹, D. Battré², M. Hovestadt², O. Kao², and K. Voss¹ ¹ Paderborn Center for Parallel Computing, Universität Paderborn ² Technische Universität Berlin

Germany

Motivation

Best Effort is not Enough

- Grid commercialisation requires establishment of Service Level Agreements (SLAs)
- Agreeing an SLA is a business risk for a provider
- risk management processes are required

Agenda

- Why Risk Management in Grids?
- Grid Risk Management (RM) Process
 - FERMA Standard
 - implementing FERMA to Providers RM
- Conclusion

Why Risk Management?

- Job failure rates in Grids are high
 - TeraGrid: 10 45 %
 - Grid3: 27% even with 5-10 retries
- Reason is frequency of resource outages
 - Grid'5000: MTBF ~14 hours [losu 05]

assessgrid

- Consequences:
 - providers are reluctant to accept strict SLA requests
 - users doubt that an SLA will be fulfilled

high [Khali 06] 5-10 retries [Dumi 05]

Are there any standards?

FERMA Standard

Need of RM

Grid RM

- Developed for any RM plans
- Designed for any kind of enterprise
- Manual procedure
 - Grid does run automatically
- Often applied once
 - Grid needs steady adjustment

Implementing FERMA to Providers RM

Specification of Strategic Objectives

Need of RM

Grid RM

- Define strategic objectives
 - maximize profit
 - maximize reliability
- Define policies
 - minimum profit margin
 - maximum acceptable Probability of Failure (PoF)
 - maximum expense of fault tolerance (FT) mechanisms
 - if not all SLAs can be fulfilled which should be violated
 - those with lowest profit
 - keep those of good customers

Risk Identification

Need of RM

Grid RM

Grid Modules

Grid RM

- Responsible for decisions and risk treatment are several modules
 - Negotiation Manager
 - pre-selection of SLA offers
 - possible acceptable
 - direct reject
 - Scheduler
 - resource allocation
 - and reservation
 - Fault Tolerance Manager
 - planning FT mechanisms
 - react to PoF changes
 - Security Manager
 - probability for DOS attacks

Input Specification of Risk Factors

Conclusion

- Minimal required input parameter
- for initial risk

Need of RM

- For more accurate risk assessment
- optional input parameters

Grid RM

- Targeted risk process
- risk is queried by a specific module
- reporting notifies this module
- only authorized modules were informed about events

Decision Making and Risk Treatment

Need of RM

Grid RM

- Distinguish negotiation and runtime
- Decision making
- accept SLA or not
- select FT feature
- Failure management
- performed after resource outage
 - initiate FT mechanisms
 - accept SLA violation
- Risk treatment
- on single or all jobs
- risk treatment might change PoF

Risk Review

- Will be performed periodically
 - several RAs in parallel
- Not coupled with the targeted RM process
- Compare estimated PoF with
 - actual occurrence of events
 - monitored in the Grid
- If residual risk is not as intended
 - adapt risk assessment

Grid RM

Need of RM

 Risk Assessment and Management is required for SLA provisioning

Conclusion

- Standard RM Processes cannot be used
- Grid RM Process has to run automatically
 Iittle modifications necessary
- AssessGrid provides reference implementation which can be configured according to the organization's objectives and system

www.assessgrid.eu

References

- [Khali 06] Khalili, O., He, J., Olschanowsky, C., Snavely, A., Casanova, H.: Measuring the Performance and Reliability of Production Computational Grids. In: GRID 7th IEEE/ACM International Conference on Grid Computing (GRID 2006), Proceedings, Barcelona, Spain, IEEE (Sep 2006) 293-300
- [Dumi 05] Dumitrescu, C., Raicu, I., Foster, I.T.: Experiences in Running Workloads over Grid3. In: Grid and Cooperative Computing - GCC 2005. Volume 3795 of Lecture Notes in Computer Science., Beijing, China, Springer (2005) 274-286
- [losu 05] A. losup, M. Jan, O. O. Sonmez, and D. H. J. Epema. "On the dynamic resource availability in grids". In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing (GRID 2007), pp. 26–33, Austin, Texas, USA, Sep 2007.

