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Abstract 
 
After two decades of intensive research the Lattice Boltzmann Method1 (LBM) emerged as a 
powerful alternative model to study fluid dynamics. Applications are plentiful2 and range from 
e.g. flow in porous media3 to suspension flows4 or blood flows5, 6. Originally LBM was valid for 
incompressible (athermal) Newtonian flows, but now the method has been extended to allow for 
e.g. non-Newtonian rheology7.  
 
The LBM is a large collection of models, but they all share the property that they numerically 
solve the Boltzmann Equation using a fixed regular lattice and a small set of discrete velocities. 
The discrete velocities are such that they match the underlying lattice, thereby transforming the 
advection operator to a streaming from one lattice node to a neighbouring lattice node. The LBM 
algorithm becomes a very clean streaming from lattice node to lattice node, followed by a 
collision operator that is local to lattice nodes. This computational structure allows for highly 
efficient parallel implementations of the LBM8. However, if the fluid domain becomes very 
irregular, like in any other parallel computation, special care must be taken to get well balanced 
computations9. 
 
LBM has found applications in many domains. As an example I will discuss biomedical 
applications, and most specifically blood flow simulations5, 6, 10, 11.  
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