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Abstract

This paper reviews the application of the extended random sequential adsorption (RSA) approaches to the modeling of colloid-

particle deposition (irreversible adsorption) on surfaces precovered with smaller particles. Hard (noninteracting) particle systems are

discussed first. We report on the numerical simulations we performed to determine the available surface function, jamming coverage,

and pair-correlation function of the larger particles. We demonstrate the effect of the particle size ratio and the small particle surface

coverage. We found that the numerical results were in reasonable agreement with the formula stemming from the scaled-particle theory

in 2D with a modification for the sphere geometry. Next, we discuss three approximate models of adsorption allowing electrostatic

interaction of colloid particles at a charged interface, employing a many-body superposition approximation. We describe two approaches

of the effective hard-particle approximation next. We demonstrate the application of the effective hard-particle concept to the bimodal

systems and present the effect of electrolyte concentration on the effective particle size ratio. We present the numerical results obtained

from the theoretical models of soft-particle adsorption at precovered surfaces. We used the effective hard-particle approximation to

determine the corresponding simpler systems of particles, namely the system of hard spheres and the system of hard discs at

equilibrium. We performed numerical computations to determine the effective minimum particle surface-to-surface distance, available

surface function, jamming coverage, and pair-correlation function of the larger particles at various electrolyte ionic strengths and particle

size ratios. The numerical results obtained in the low-surface coverage limit were in good agreement with the formula stemming from

the scaled-particle theory with a modification for the sphere geometry and electrostatic interaction. We compared the results of numerical

computations of the effective minimum particle surface-to-surface distance obtained using the 2D, 3D, and curvilinear trajectory model.

The results obtained with the 3D and curvilinear trajectory models indicate that large-particle/substrate attractive interaction significantly

reduces the kinetic barrier to large, charged-particle adsorption at a surface precovered with small, like-charged particles. The available

surface function and jamming-coverage values predicted using the simplified 3D and the more sophisticated curvilinear trajectory models

are similar, while the results obtained with the 2D model differ significantly. The pair-correlation function suggests different structures of

monolayers obtained with the three models. Unlike the three models of the electrostatic interaction, both effective hard-particle

approximations give almost identical results. Results of this research clearly suggest that the extended RSA approaches can fruitfully be

exploited for numerical simulations of colloid-particle adsorption at precovered surfaces, allowing the investigation of both hard and

soft-particle systems.
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1. Introduction

The adsorption and deposition (irreversible adsorption)

of colloids and bioparticles at solid/liquid interfaces are of

great significance in many natural and practical processes

such as water and wastewater filtration, membrane filtration,

papermaking, flotation, protein and cell separation, enzyme

immobilization, biofouling of membranes, and artificial

organs. Often in these processes, especially in filtration,

polydisperse suspensions or mixtures appear, e.g., colloid/

polymer, colloid/macroscopic particle, or protein/surfactant.

As a result of their higher diffusivity, the smaller compo-

nents of the mixture will adsorb preferentially at the

interface, forming a layer that may prohibit consecutive

deposition of larger particles. This effect leads to a

considerable decrease in the kinetics of large-particle

accumulation at the interface as reported in the literature

[1–3]. Similar problems often appear in model experiments

concerned with protein or colloid-particle adsorption when

the usual substrate cleaning procedure may produce a

nanosized contaminant layer difficult to detect by conven-

tional means. Formation of such a layer will produce surface

heterogeneity, in respect to both charge distribution and

geometry, which is expected to influence the kinetics and

maximum coverage of the adsorption experiments. Thus,

modeling of adsorption phenomena at precovered surfaces

seems an important and challenging task that can be

accomplished using a variety of approaches. Among them,

the random sequential adsorption (RSA) approach seems to

be the most suitable because of its simplicity and efficiency.

The classical RSA model considers a sequence of trials

of particle adsorption at a homogeneous interface [4–6].
Once an empty surface element is found, the particle is

permanently fixed with no consecutive motion allowed.

Otherwise, the virtual particle is rejected and a next-addition

attempt is undertaken. Since 1980s a number of extended

RSA models have been developed that include the effects of

particle shape [7–11], Brownian motion [12–15], external

force [16–19], particle–particle [20–22] and particle–

interface [23] electrostatic interaction, colloid-particle poly-

dispersity [24–26], and surface heterogeneity [27–30]. The

results based on RSA simulations allow us to predict

particle monolayer structure and the jamming coverage of

particles. We can use the model to predict particle-

adsorption kinetics as well, although, depending on the

particle-transport mechanism, an appropriate analysis of real

adsorption problems can require including a correction for

bulk transport or the hydrodynamic scattering effect [31].

Thus, RSA modeling can be a powerful tool in the study of

irreversible adsorption of macromolecules, proteins, and

colloid particles.

The goal of this paper is to present a short review of

methods used and preliminary results obtained in RSA

numerical simulations of colloid adsorption at precovered

surfaces. Many of these results have been published in Refs.

[3,27,28,32–34]. First, we present the simulation algorithms

for hard and soft particles. Next, we discuss the existing 2D,

3D, and curvilinear trajectory (CT) models of particle

adsorption including the electrostatic interaction at the

adsorption surface. We follow by demonstrating the

application of the effective hard-particle (EHP) approach

to the bimodal system of particles. Our determination of the

available surface function (ASF), jamming coverage, radial

distribution function, and effective minimum particle



P. Weroński / Advances in Colloid and Interface Science 118 (2005) 1–24 3
surface-to-surface distance are presented next. Lastly, we

verify the effect of the particle size ratio, small-particle

surface coverage, and electrolyte ionic strength on the

characteristics of the adsorption process.
2. Hard-particle systems

Let us assume that repulsive (interparticle) interactions in

our system are of the hard-particle type, i.e., the net

interaction energy tends to infinity when the particles

overlap and to zero otherwise. We also assume localized

adsorption of the particles, which means that no consecutive

motion of the adsorbed particles is allowed. Experimentally,

the system can be realized at high ionic strength if the small

and large particles bear the same surface charge. We can

produce a random surface by covering a homogeneous

interface with Ns small spherical particles of radius as. (In

what follows, the subscripts s and l will always refer to

small and large particles, respectively.) The number of

adsorbed particles can be expressed in terms of dimension-

less surface coverage defined as

hi ¼ ka2i Ni=S; i ¼ s; l; ð1Þ

where S is the geometrical area of the interface. The particle

distribution is known a priori and can quantitatively be

characterized in terms of the pair-correlation function

(called also radial distribution function) defined as

gi rð Þ ¼ S

N2
i b

XNi

j¼1

XNi

m¼1

d r� rm � rj
� �� �

�; i ¼ s; l; ð2Þ

where r is the position vector of a point over the adsorption

plane (measured from the center of an adsorbed particle), d
is the Dirac delta function, rj and rm are the position vectors

of the particles j and m, respectively, and angle brackets

mean the ensemble average. In the absence of external

forces when the system can be considered as isotropic, the

vector r can be replaced with the radial coordinate r and the

pair-correlation function may be calculated more directly by

converting Eq. (2) to the form

gi rð Þ ¼ gi rð Þ ¼ S

Ni

N̂N a rð Þ
2krDr

; i ¼ s; l; ð3Þ

where N̂a(r)= bNa� /Ni is the averaged number of the small

or large particles within the annulus of the mean radius r

and the thickness Dr.

The simplest situation arises when gi(r) =1, which

corresponds to a perfectly random distribution of particles,

characteristic for low surface coverage. However, when

surface coverage exceeds 10%, deviations from the uniform

distribution occur and particle positions become correlated,

which is manifested by an increased number of pairs

separated by small distances. The pair-correlation function

in this case is well known from numerical simulations [20]

and from experiments [20,35,36].
Now, let us consider the adsorption of larger particles

(having radius al) at such prepared random surface. From

simple geometry we can deduce that the particle can be

placed at a short distance h from the surface when there are

no small and large particles within the circular areas

Ai =k[4alai +(2ai�2al�h)h], i =s,l, respectively, called

the exclusion areas. Obviously, for h =0, the exclusion area

Ai =4kalai, whereas for h�2ai Ai =0. The probability of

finding such an empty area averaged over the entire surface

S (which equals the probability of placing a large particle at

the distance h over the interface) is defined as the ASF

[5,37–39] or the surface-blocking function Bl [36,40]. This

function has fundamental significance for reversible (equi-

librium) systems, allowing the calculation of the thermody-

namic potential of particles [37]. For the irreversible

systems considered in our work, the knowledge of the

blocking function is necessary for a quantitative description

of particle-adsorption kinetics. Since the blocking function

depends in a complicated manner on particle coverage,

particle distribution, and distance h, no theoretical results

have been derived yet for random surfaces. The only results,

in the form of a power expansion of Bl in terms of hl, were

formulated for a monodisperse system and homogeneous

surfaces [39]. These results, discussed extensively in Ref.

[40], indicate that the most significant contribution to the

blocking effects comes from the region close to the

interface, when the adsorbing particles approach the primary

minimum distance dm (hY0). Within this limit, the

blocking function can easily be calculated numerically for

arbitrary hl by applying the procedure described below.

2.1. The simulation algorithm

We simulated the irreversible adsorption process using

the extended RSA model, as described in Ref. [28]. The

simulations were carried out over a square simulation

plane with the usual periodic boundary conditions at its

perimeter. The simulation plane was divided into two

subsidiary grids of square areas (cells) of the size
ffiffiffi
2

p
as

and
ffiffiffi
2

p
al. This technique enhanced the scanning effi-

ciency of the adsorbing-particle environment performed at

each simulation step.

The entire simulation procedure consisted of two main

stages. First, the simulation plane was covered with the

smaller sized particles to a prescribed surface coverage hs.

During this stage the usual RSA simulation algorithm

pertinent to hard spheres was used. Then the larger

spheres were adsorbed at the precovered surface by

choosing at random their xv and yv center coordinates.

At both stages the overlapping test was carried out by

checking if the condition

xm � xvð Þ2 þ ym � yvð Þ2 > 4amav ð4Þ

was met for every particle m located next to the virtual

one (subscript v refers to the virtual particle). If the

condition was violated for any m, the virtual particle was
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rejected and a next-addition attempt was undertaken.

Otherwise, the particle was permanently fixed with no

consecutive motion allowed.

The algorithm enabled us to simulate adsorption kinetics

in terms of the dimensionless adsorption time defined as

s ¼ Natt

Nch

; ð5Þ

where Natt and Nch are the overall and the characteristic

number of the large-particle adsorption attempts, respec-

tively. The characteristic attempt number is usually defined

as Nch=S /kal
2. The adsorption time was set to zero at the

beginning of the second stage. The maximum dimensionless

time attained in our simulations was 104, which required

Natt of the order of 10
9. Therefore, to calculate the jamming

coverage (after infinite adsorption time), the results obtained

over a long time were extrapolated by using a power-law

dependence. To attain sufficient accuracy, we took averages

from several computer runs.

Also, we calculated the large-particle adsorption proba-

bility (blocking parameter Bl) using the above algorithm

according to the method described by Schaaf and Talbot [5],

that is, by exploiting the definition

Bl hs; hlð Þ ¼ N 0
succ

N 0
att

; ð6Þ

where N0
succ is the number of successful adsorption events

performed at fixed hs and hl. In practice, N0
succ had to be

about 105 to attain a sufficient accuracy for the ASF.

2.2. Analytical approximation

Because of a lack of appropriate expressions for the ASF

in the case of the RSA of large particles at precovered

surfaces, we tested the results of the simulations in terms of

the equilibrium adsorption approach. This approach seems

reasonable because the ASFs for the RSA and equilibrium

processes are indistinguishable in the early stage of the

adsorption process at low surface coverage [5].

According to the scaled-particle theory (SPT) formulated

in Ref. [37] and then extended to multicomponent mixtures

in Refs. [41,42], the equilibrium large-disk ASF for the

bimodal suspension of disks is given by the expression

Bld ¼ � ln
lR
ld

kT

� �

¼ 1� hdð Þexp � 3hld þ c c þ 2ð Þhsd
1� hd

� hld þ chsd
1� hd

� �2" #
;

ð7Þ

where lR
ld is the residual potential of the larger particles, k is

the Boltzmann constant, T is the absolute temperature,

hid=ka
2
idNid /S is the disk surface coverage, i =l,s, aid and

Nid are the radius and number of the adsorbed disks,

respectively, hd=hld+hsd, and c =ald /asd is the disk size
ratio. It should be noted that Eq. (7) describes a two-

dimensional system only.

However, a useful approximation of the hard-sphere

adsorption can be formulated by redefining the geometrical

parameter c. Expanding Eq. (7) in the power series of hid
(up to the order of two), we obtain the expression

Bld ffi 1� 4hld � c þ 1ð Þ2hsd; ð8Þ

valid for low surface coverage. In the case of the bimodal

spheres system, it can be deduced from geometrical

considerations that at low coverage the large-particle ASF

is equal to

Bl ffi 1� 4hl � 4khs; ð9Þ

where k is the large-to-small sphere size ratio, k =al /as.
Thus, Eqs. (8) and (9) can be matched when

c ¼ 2
ffiffiffi
k

p
� 1; ð10Þ

hld=hl, and hsd=hs. Finally, we can conclude that the ASF

for the large sphere in the bimodal spherical-particle system

in the low-surface coverage limit can be approximated by

the equation

Bl ¼ 1� hð Þexp

"
� 3hl þ 4k � 1ð Þhs

1� h

�
hl þ 2

ffiffiffi
k

p
� 1

� �
hs

1� h

0
@

1
A

2
3
75; ð11Þ

where h=hs+hl.
Substituting hl =0 we can derive the analytical expres-

sion for the large-particle ASF corresponding to the initial

adsorption flux of the large particles at surfaces precovered

with the small ones:

B0
l ¼ 1� hsð Þexp � 4k � 1ð Þhs

1� hs
�

2
ffiffiffi
k

p
� 1

� �
hs

1� hs

2
4

3
5
2

8><
>:

9>=
>;:

ð12Þ
Knowing Bl, we can calculate particle-adsorption kinet-

ics from the constitutive dependence [2–7]

Bl ¼
dhl
ds

: ð13Þ

This equation can be formally integrated to the form

hl sð Þ ¼
Z hl

0

dnl
Bl nlð Þ

� � �1ð Þ

; ð14Þ

where [ f(x)](�1) represents the inverse function of the

function f(x) and nl is a dummy integration variable. It

should be mentioned that Eq. (14) adequately describes the

adsorption kinetics only in a system where both bulk
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Fig. 2. Effect of the particle size ratio k on the initial adsorption flux B l
0

calculated for the small-particle surface coverage hs =0.02 (circles),

hs=0.05 (squares), and hs=0.10 (triangles) using Eq. (6).
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transport and the hydrodynamic scattering effect can be

neglected.

2.3. Results of computation

Using the above RSA algorithm, we performed extensive

calculations to determine the ASFs, adsorption kinetics,

jamming coverages, and the structure of the large-particle

adsorbed layer. We verified the effect of the particle size

ratio and the small-particle surface coverage on the

characteristics of the adsorption process, and we compared

the obtained numerical results with the analytical appro-

ximations described above. The results that allow quantita-

tive analysis of the adsorption process are presented below.

2.3.1. Available surface function

The quantity of considerable interest is the blocking

function Bl
0, which characterizes the initial adsorption

kinetics of large particles at precovered surfaces. In Fig. 1

the dependence of this function on the small-particle surface

coverage is shown for k =1 (reference curve for monodis-

perse system), 2.2, 5, and 10. As will be noticed, the

influence of preadsorbed small particles on the initial flux

(B l
0 function) is significantly more pronounced for larger

values of the k parameter. This ‘‘surface-poisoning’’ effect is

further illustrated by the data shown in Fig. 2. It is

interesting to note that the numerical data are well reflected

by analytical Eq. (12) at low to medium surface coverage

hs<0.2, and that the RSA-calculated ASF is smaller than the
0.0 0.1 0.2 0.3 0.4 0.5

B
l0

10-4

10-3

10-2

10-1

100

sθ

Fig. 1. Variation of the ASF B l
0 (the initial adsorption flux) with the small-

particle surface coverage. Dashed lines denote equilibrium results (Eq. (12))

and solid lines denote computer simulations (Eq. (6)) for the particle size

ratio k =1 (circles, reference curve), k =2.2 (squares), k =5 (triangles up),

k =10 (triangles down).
ASF of the large particle adsorbed at equilibrium. The

theoretical predictions shown in Figs. 1 and 2 suggest that

the presence of trace amounts of small particles often

invisible under an optical microscope can exert a profound
0.0 0.1 0.2 0.3 0.4 0.5

B
l

10-4

10-3

10-2

10-1

100

l
θ

Fig. 3. Influence of the large-particle surface coverage h l on the ASF B l, as

predicted by the SPT (Eq. (11), dashed lines) and numerical simulations

(Eq. (6), solid lines). The curves correspond to the particle size ratio k =2.2
and the small-particle surface coverage hs=0 (circles, reference curve),

hs=0.10 (squares), hs=0.20 (triangles up), and hs=0.25 (triangles down).
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effect on the adsorption kinetics (initial flux) of large

particles, whose surface concentration can easily be

measured directly (microscopically). We can therefore

expect that by measuring the initial flux of large particles

(of various sizes), we can detect the presence of small

(invisible) particles.

The data shown in Figs. 1 and 2 are valid for the initial

adsorption stage when the flux of the large particles remains

steady. For longer times, however, accumulation of the large

particles at the adsorption surface will lead to surface-

blocking effects, which decrease the adsorption rate. The

results plotted in Fig. 3 present the dependence of the Bl

function on the large-particle surface coverage for fixed hs

values at k =2.2. It can be seen that the presence of the small

particles considerably reduces Bl. Unlike the equilibrium

approximation of Bl
0, the large-particle ASF at the higher

hl is rather poorly approximated by the SPT, which

significantly overestimates the numerical results, especially

for hs>0.1.

2.3.2. Maximum surface coverage

The kinetic curves, i.e., the hl vs. s dependencies derived

from the numerical RSA simulations for k =5, and various

surface coverages of small particles are shown in Fig. 4. The

analytical results based on the equilibrium SPT and

calculated from Eq. (14) are also presented for comparison.
10 100

0.751

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.00.10.20.30.40.50.6

lθ

τ

8

8

-1/2τ

Fig. 4. Adsorption kinetics of the larger particle at the surface precovered

with the smaller particles at the particle size ratio k =5, expressed as h l vs. s
dependencies: hs=0.02 (circles), hs=0.05 (squares), hs=0.10 (triangles up),

hs=0.15 (triangles down). Open symbols denote the computer simulations.

Dashed lines correspond to the SPT equilibrium results (Eqs. (11) and (14)).

Solid lines depict the linear fits, i.e., h l
V�h l”s�1/2.
As can be seen, the equilibrium model can be used as a

reasonable estimate of adsorption kinetics on precovered

surfaces for adsorption time s <10. For longer times,

however, the equilibrium SPT results are overestimated.

The adsorption kinetics at the initial stage is linear with the

slope (initial flux) well reflected by Eq. (12). At s>1 the

kinetic curves deviate significantly from linearity, indicating

that the adsorption rate decreases. To present this long-time

adsorption data more efficiently, we applied the hl vs. s
�1/2

transformation, which compresses the infinite time domain

into a finite one. This transformation has been used

previously [4,5,20,43] for analyzing adsorption at homoge-

neous surfaces. As can be seen in Fig. 4, the numerical

results plotted using this transformation can indeed be

described by a straight-line dependence, although the range

of this asymptotic regime decreases for higher values of hs.

The linear dependence of hl on s�1/2 implies that the

blocking parameter of the large particles Bl is given by the

expression

Bl” hVl hsð Þ � hl
� �3 ð15Þ

[28], where the large-particle jamming coverage hl
V is

dependent only on the small-particle coverage hs. Thus,

the jamming coverage has been calculated by fitting the

numerical data (the hl vs. s�1/2 dependencies) by straight

lines and subsequent extrapolation to s�1/2 (adsorption time

tending to infinity). Averages from five various computer

runs have been taken in order to attain a sufficient precision

of hl
V.

Results collected in Fig. 5 present the dependence of

hl
V on k changed within the range of 1 to 20 at fixed values

of hs equal to 0.02, 0.05, 0.10, and 0.20. We can observe in

this figure that the presence of preadsorbed particles results

in the monotonic decrease of the large-particle jamming

coverage, although the effect becomes well pronounced

only for k>4 and hs>0.02. For example, the change in the k
parameter from 5 to 20 at hs=0.05 results in decrease of

hl
V from 0.47 to 0.35. The net coverage hs+hl

V drops in this

case from 0.52 to 0.40. On the other hand, for hs=1.10, the
change in the k parameter from 5 to 20 will exert a more

significant effect on hl
V, which will decrease from 0.37 to

0.02, whereas the net coverage decreases from 0.47 to 0.12.

Dependencies of the jamming concentrations hl
V on hs are

also shown graphically in Fig. 6. For sake of convenience the

total coverage, i.e., the sum hs+hl
V, is also plotted in the

figure. The characteristic feature of the hl
V vs. hs dependen-

cies is that they fall abruptly to very small values when hs is
increased. The numerical results can be fitted by the

interpolating functions (cf. dash-dot lines in Fig. 6)

hVl ¼ h c= c�hsð Þ½ 
2
V ; ð16Þ

where hV=0.547 is the jamming coverage for hard,

monodisperse spheres, and c are the dimensionless constants

equal to 0.596, 0.404, and 0.274 for k equal to 2.2, 5, and 10,

respectively.
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Fig. 6. The jamming limit h l
V as a function of the small particle surface

coverage hs at k =2.2 (circles), k =5 (squares), and k =10 (triangles). Open

symbols are the numerical results determined from the linear fitting of the

simulation data. Dash-dot lines represent the fitting functions given by Eq.

(16). Solid lines show the limiting results calculated from Eq. (17). Dashed

lines (or gray symbols) correspond to the net coverage h l
V+hs.

0.000.250.500.751.00

0.0

0.1

0.2

0.3

0.4

0.5

1.0 1.2 1.5 2.0 3.0 5.0 10.0

lθ

λ

-1λ

Fig. 5. The jamming limit h l
V as a function of the k parameter at the small-

particle surface coverage hs=0.02 (circles), hs=0.05 (squares), hs=0.10

(triangles up), hs=0.20 (triangles down). Numerical results were calculated

by fitting the simulation data (hl vs. s�1/2 dependencies) by straight lines

and subsequent extrapolation to s�1/2.
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On the other hand, in the large-particle low-coverage

limit corresponding to the isolated targets regime, i.e., for

hl
V<0.10, one could expect that jamming coverage should

be proportional to the initial ASF of the large particle and to

its size. Indeed, the character of the numerical data can

better be reflected by the interpolating function

hVl ¼ ck2B0
l hsð Þ; ð17Þ

where Bl
V(hs) is the ASF function given by Eq. (12) and c

represent the dimensionless constants equal to 1.718, 1.334,

and 0.930 for k equal to 2.2, 5, and 10, respectively. Another
interesting feature of the data shown in Fig. 6 is that the net

surface coverage of adsorbed particles passes through a

minimum whose depth increases considerably for larger k.
We found the minimum coverages to be 0.378 for k =2.2
(hs=0.34), 0.261 for k =5 (hs=0.24), and 0.181 for k =10
(hs=0.16). These results represent a spectacular manifesta-

tion of the irreversibility effect since the composition and

density of FFmonolayers__ formed by particles is dependent

on the peculiarities of the adsorption path, e.g., on the order

that particles are brought to the interface. Physically, this

effect can be realized by replacing the smaller particle

suspension after a given adsorption time with the larger

particle suspension.

The abrupt change in hl
V upon increase in k or coverage

of small particles hs (analogous to the change in the initial

flux presented in Figs. 1 and 2) suggests that by measuring
hl
V experimentally one can draw conclusions about the size

and coverage of smaller sized particles. This ability means

that surface homogeneity can easily be determined in a

measurement of such type. It should be mentioned,

however, that the jamming-coverage measurements are

considerably more tedious than the kinetic measurements

of the initial flux of larger particles.

2.3.3. Pair-correlation function

The presence of preadsorbed particles affects not only the

kinetic aspects of larger particle adsorption but also the

spatial distribution of larger-particle-forming monolayers.

This phenomenon can be qualitatively observed in Fig. 7,

where the ‘‘mixed’’ monolayers are shown obtained from

numerical simulations for fixed large-particle coverage equal

to 0.1 and various k equal to 2.2, 5, and 10. It should be noted

that for k>4, adsorption of large particles might occur in such

a way that the small particles are located underneath (shown

in Fig. 7 by circles inside the large particles). This

phenomenon reduces the surface-blocking effect in compar-

ison with the adsorption of disks analyzed in Refs. [24,25].

Quantitatively, the effect of the small particles on the

large-particle monolayer structure can be evaluated by

determining the pair-correlation function of the large

particles gl according to the method described above. As

was demonstrated in [28,32], for all verified k the shape of

the pair-correlation function deviates considerably from the

monodisperse counterpart. This effect is especially well
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Fig. 8. Radial distribution functions g l(r /a l) calculated using Eq. (3) for the

particle size ratio k =2.2 and the small-particle surface coverage hs=0.10

(circles), hs=0.20 (squares), and hs=0.30 (triangles) close to jamming. The

large-particle surface coverage equals h l =0.41, h l =0.25, and h l =0.09,

respectively.
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Fig. 9. Radial distribution functions g l(r /a l) calculated using Eq. (3) for the

large-particle surface coverage h l =0.1 (close to jamming) and the particle

size ratio k =1 (reference curve, circles), k =2.2 (squares), k =5 (triangles

up), and k =10 (triangles down). The corresponding small-particle surface

coverage equals hs=0, hs=0.127, hs=0.191, and hs=0.291, respectively.

Fig. 7. Adsorbed particle ‘‘monolayers’’ close to jamming simulated

numerically at the large-particle surface coverage h l =0.1 and various

parameters k and hs, i.e., k =2.2 and hs=0.30, k =5 and hs=0.20, k =10
and hs=0.14. Note that the invisible, small background particles located

below the larger particles are made visible to show their positions.
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pronounced for k =2.2 (see Fig. 8) when the gl functions

exhibit a maximum increasing with hs, located at the

dimensionless distance r /al equal about 2.8. The position

of this maximum agrees quite well with the separation

distance between two large particles with one small particle

in between, which can be calculated from simple geometry

as 4=
ffiffiffi
k

p
. Thus, for k =2.2, r /a l equals 2.7, which

corresponds well to the above value determined from
simulations. From simple geometrical considerations we

can also deduce that for k >4 the small particles cannot

prevent the larger ones from approaching each other closely.

Thus, the secondary maximum of the gl function should be

absent, which is confirmed by the data presented in Fig. 9.

The results concerning the distribution of large particles

over a random monolayer shown in Figs. 7–9 suggest,

therefore, that the presence of smaller particles (causing

surface heterogeneity) may be detected by determining the

pair-correlation functions of large particles, used as markers.

However, the differences in monolayer structure are most

pronounced for large-particle coverage close to jamming,

which makes such measurements rather tedious.
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The above theoretical data are strictly valid for hard

particles, i.e., for the case when the repulsive interaction

range remains much smaller than particle size as. This

situation can be realized experimentally at high ionic

strength of the particle suspension, which is usually the case

in protein adsorption studies mimicking physiological

conditions. However, for lower ionic strength, the interaction

range may become comparable with particle dimensions. In

this case the particle–particle and particle–interface elec-

trostatic interaction should be taken into consideration.
3. The electrostatic interaction models

An exact determination of the interaction energy between

particles near the adsorption surface in general case seems

prohibitive because of the inherent many-body problem.

However, as demonstrated in Ref. [23], in the case of short-

ranged interactions and not very low surface potentials, the

van der Waals attraction can be negligible, and the

superposition approximation of the electrostatic interaction

can offer satisfactory accuracy of the total particle potential at

the precovered collector surface. Usually, the inaccuracy of

this approximation may be estimated as a ratio of the

dispersion to electrostatic interaction. In stable colloidal

systems that are of our interest, the inaccuracy is often smaller

than 1% for an energetically important surface-to-surface

distance. Even with this simplification, including electrostat-

ic interaction into the RSAmodel of adsorption at precovered

surfaces is not an easy task. It should be remembered that

RSA simulations exploit a Monte Carlo technique, strictly

suitable for systems at equilibrium. Extending the technique

to model transport-related or irreversible phenomena should

carefully be considered to avoid unrealistic or unreasonable

results. If the application of the RSA model to hard-particle

systems seems to be theoretically justified and has been

experimentally verified for 15 years, the two older models

(2D and 3D) of electrostatic interaction applicable for the

RSA algorithm, often exploited for interpretation of exper-

imental results, are greatly simplified. Therefore, to evaluate

applicability of the models, we compare results derived from

them with computations obtained based on the recently

proposed, more sophisticated model CT [34]. In what follows

we assume constant potentials on all surfaces.

3.1. 2D model

Historically, the first model of RSA allowing electrostatic

interaction among colloid particles was proposed by

Adamczyk et al. [20] and is known as the 2D RSA model.

This model neglects the particle transport from the bulk,

assumes the perfect sink (PS) particle–interface interaction,

and adopts the Monte Carlo method of calculating the

adsorption probability. It exploits the Boltzmann distribu-

tion for the interparticle potential and takes into account just

the lateral electrostatic interaction force. The interaction
energy is calculated according to the linear superposition

approximation (LSA) [44] with a dimensionless coefficient

a accounting for the interface effect on the particle–particle

lateral interaction, expected to be of the order of 0.5. For

two spherical particles of radii ai and aj, separated by the

gap width hm, the repulsive energy in the kT units is equal to

Eij hmð Þ ¼ ae
kT

e2
YiYj

aiaj

ai þ aj þ hm
exp � jhmð Þ;

i; j ¼ l; s; ð18Þ

where ( is the dielectric constant of the medium, e is the

electron charge, j�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
103ekT= 8ke2INAð Þ

q
is the Debye

screening length in centimeters, I is the electrolyte ionic

strength expressed in mol/dm3, NA is Avogadro’s number,

and Yi and Yj are the effective surface potentials of the

particles given by equation [45]

Ym ¼
8tgh w

;

m=4
� �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jam þ 1

jam þ 1ð Þ2
tgh2 w

;

m=4
� �s ; m ¼ i; j; ð19Þ

where w
;

m ¼ wm
e
kT

is the dimensionless surface potential of

the particle m, and wm is its surface potential.

Obviously, in the case of a very thin electric double layer,

a =1, while for jai <10 it is reasonable to expect a <0.5.
Thus, a can be considered as a fitting parameter allowing for

some kind of correction for the surface interaction. It should

be noted that calculation of its exact value is not usually

crucial, because the interparticle potential used in the model

is mostly determined by the exponential term appearing in

Eq. (18).

As discussed in Ref. [34], the 2D RSA model seems to

be a reasonable approximation in a system where the

attractive (driving) force can be considered as much smaller

than the repulsive particle–particle force, even close to the

adsorption surface, and thus corresponding to the PS model.

This condition is fulfilled to a reasonable extent in the case

of a very low surface potential of the interface, although the

problem of particle surface diffusion or adsorption revers-

ibility can arise in such a system. If the condition is not

obeyed, however, the repulsive interparticle interaction can

be reduced because of the strong particle attraction to the

interface. Such a situation arises especially when a large

particle approaches the homogeneous interface next to a

smaller, like-charged particle. Therefore, one may expect

that the surface-blocking effects predicted for adsorption on

precovered surfaces using the 2D RSA model can be

overestimated.

3.2. 3D model

The second RSA approach allowing electrostatic inter-

action, called the 3D RSA model, was proposed by

Oberholzer et al. [23] and then extended to bimodal systems

by Weroński [33]. Unlike the 2D model, this approach
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considers the particle transport from the bulk, assuming that

neither electrostatic interaction nor Brownian motion causes

a shift in the lateral position of the adsorbing particle as it

moves toward the collector surface. During this motion, the

total particle potential can be calculated according to the

formula

Ei hð Þ ¼
Xn
m¼1

Eij hmð Þ þ Eip hð Þ; i; j ¼ l; s; ð20Þ

where h is the particle–interface gap width, n is the number

of the small and large particles attached to the collector

surface in the vicinity of the adsorbing particle, hm is the

minimum surface-to-surface distance between the moving

particle and the deposited particle m, Eij is the electrostatic

(repulsive) interaction energy between them, and Eip is the

electrostatic (attractive) interaction energy between the

particle and the collector surface. For the research described

in this paper, all electrostatic particle–particle interactions

in the system were calculated using Eq. (18) derived from

the LSA with a =1. The attractive electrostatic energy

between the traveling spherical particle and the adsorption

surface is given by the limiting forms of Eqs. (18) and (19)

when one of the particles_ radii tends to infinity.

In general, a total interaction energy profile Ei(h) is

produced by a combination of the repulsion exerted by the

attached particles with the attraction exerted by the surface.

As a consequence, the profile has a maximum Eb(xv, yv,

x1, y1,. . ., xn, yn), which represents a kinetic barrier to

adsorption of the virtual particle. Its height depends on the

configuration of deposited small and large particles. Using
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Fig. 10. Electrostatic interaction energy profiles calculated for the large

particle approaching the surface next to the small particle in 3D RSA. The

plots represent results based on Eq. (20). The dash-dot-dot line depicts the

large-particle/interface attraction. The empty and gray circle indicates the

particle–particle repulsion and the total energy profiles, respectively. Dotted,

dashed, and solid lines correspond to r2= r0+2 /j, r2= r0+1.2 /j, and

r2=r0+0.8 /j, respectively, where r0 ¼ 2
ffiffiffiffiffiffiffiffi
asal

p
. See more detail in the text.
the Boltzmann distribution, we can calculate the particle

adsorption probability at the given point of the adsorption

surface. Fig. 10 presents the total interaction energy

profiles corresponding to the simplest system, in which

the large particle moves toward the surface next to the

small, adsorbed particle. We assume the following para-

meters: as =250 nm, a l = 625 nm, ws =wl =�50 mV,

wp=100 mV, and I =10�4 M. The profiles correspond to

three different values of the particle center-to-center

distance projection length r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xl � xsð Þ2 þ yl � ysð Þ2

q
.

Based on the plots, we can conclude that the energy barrier

occurs at some height above the adsorption surface and

that the barrier height increases when the projection length

r2 decreases.

Although the authors of Ref. [23] claim that the 3D

RSA model is more realistic, we should remember that

physics of this approach is still greatly simplified. The

assumption that the particle trajectory is perpendicular to

the interface seems artificial, especially for a particle

overcoming the energy barrier, where the lateral compo-

nent of the repulsive particle–particle force dominates. We

can expect that according to the Boltzmann distribution

most of the particles passing the energy barrier have low

kinetic energy and therefore move in the direction of the

lateral force. Thus, although the 3D RSA model seems to

be a reasonable approach for studies of kinetic aspects of

adsorption phenomena, it fails to provide appropriate

monolayer structures. Consequently, we can suppose that

computed jamming limits might be inaccurate as well.

3.3. CT model

Recently a new, extended RSA model that includes

electrostatic interaction was proposed by Weroński [34].

The model, called CT RSA, has been based on the 3D RSA

model. To avoid the discrepancy inherent in the assumption

of the linear trajectory of the adsorbing particle, the virtual-

particle trajectory is calculated according to the forces

acting on the particle, starting from the point where the

energy barrier was found (see Fig. 11). In the simplest

formulation of this model, the trajectory is determined

assuming the mutual compensation of hydrodynamic and

dispersion forces between the interface and the particle

approaching it. Further, particle–particle hydrodynamic and

dispersion interactions, external forces, and rotational

motion as well as convection and Brownian motion in

the thin layer are neglected. Therefore, the virtual-particle

trajectory can be calculated by integrating the deterministic

equation of motion

dri

dt
¼ DV

i

kT
Fi rið Þ ð21Þ

over time, where ri is the virtual-particle position vector, t

is the time, Dl
V=kT / 6kgai is the diffusion coefficient of the

particle in the bulk, g is the solution dynamic viscosity, and
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Fig. 11. Three different approaches of random sequential adsorption at precovered surfaces. Bold lines depict trajectories of the large-particle center considered

in the models. The schemes show the large spherical particle at the energy barrier, where the adsorption probability is calculated. Fl represents the net force

acting on the particle at the barrier. Note that because of the smaller particle–particle distance in the 2D RSA model, this approach predicts much stronger

repulsion than the 3D and CT models. Unlike the 3D model, the CT RSA model assumes that immediately after crossing the energy barrier, the adsorbing

particle begins to move curvilinearly.
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Fi is the net force acting on the particle calculated

according to the equation

Fi rið Þ ¼ � rEi rið Þ; ð22Þ

where Ei(ri) is the total particle potential given by Eq. (20).

It should be noted that the probability of particle

adsorption at the final point can be considered as equal to

the probability of its appearing at the starting point of the

trajectory, calculated according to the Boltzmann distribu-

tion as in the 3D model. Actually, because of a complicated

monolayer structure at high surface coverage, some of the

virtual particles (one per a few thousand trials) are driven far

from the adsorption surface. Therefore in practice a limiting

distance must be introduced to the simulation algorithm,

usually corresponding to a weak particle–interface interac-

tion on the order of 10�2 kT. If no energy barrier exists at the

chosen virtual coordinates xv, yv, then no tracing is

conducted and the virtual particle is adsorbed at this point,

unless another adsorbed particle prevents it. In the latter case,

the starting point of the virtual-particle trajectory and the

probability that the particle will appear there are calculated at

the height corresponding to the particles contact.

There is no conceptual difficulty in incorporating thermal

motion, convection, or other types of interaction into the

model, although incorporation may require some modifica-

tion of the method used for choosing the particle’s starting

position. Eq. (21) then becomes the stochastic Langevin-

type equation underlying the Brownian Dynamics (BD)

method [46]. Therefore, using the more sophisticated

equations leads to a ‘‘smart’’ BD model. In spite of rapid

development in computer technology, however, the compu-

tational expense of such simulations is still high, which

makes the simple CT RSA model attractive and useful.
4. The effective hard-particle approach

If the required accuracy of computation is not very high,

the modeling of the electrostatic interaction can be
simplified by exploiting the EHP concept. This method,

originally developed for calculating the structure of real

fluids [47–50] and offering considerable advantages over

the direct method of soft-particle simulation, has often been

exploited for modeling colloid phenomena [20,22,51–53],

too. Instead of making complicated and time-consuming

computations of particle energy, the EHP algorithms take

into consideration a simple overlapping test in which the

real, geometrical particle dimensions are replaced with the

effective ones. Apart from simplifying algorithms and

achieving a large computational gain, the EHP approach

allows comparison with analytical solutions, which are

often known for hard-particle systems, and thus yields a

simple test for validating numerical results. It is worthwhile

to note that the algorithms are independent of the method

used for calculating the effective geometrical parameters.

Below we discuss two methods of calculating the effective

hard-particle diameter for monodisperse spherical particles

and extending of the EHP approach to bimodal systems.

4.1. Monodisperse systems

The rigorous theoretical method of determining the

relationship between the idealized hard-sphere model and

the smoothly varying repulsive forces found in real fluids

was developed based on the idea proposed by Zwanzig [47],

which consists in treating the intermolecular forces in a fluid

as perturbations on a hard-core potential. Since then, several

authors have developed various perturbation theories,

introducing improved models of the EHP. In our consider-

ation we will use the Barker–Henderson model [50].

According to this model, the EHP diameter is equal to

d4ii ¼
Z V

0

1� exp � Eii rð Þ½ 
f gdr; i ¼ s; l; ð23Þ

where r =2ai+h1, and h1 is the minimum particle surface-

to-surface distance.

In general, the energy Eii can be a complicated function

of the center-to-center distance r, and the integral appearing
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in Eq. (23) must be computed numerically. It should be

mentioned that Eq. (23) was derived assuming short-range

interactions. This approximation has successfully been

applied to a description of fluids and colloidal suspensions.

The model was extended and effectively exploited for

nonspherical particles as well [22].

Another more intuitive approach was proposed and used

mostly by researchers conducting experimental studies of

colloids [51–53]. Motivated by the fact that any force

becomes important as soon as the work of that force is on the

same order as thermal energy, some authors have chosen akT
(with a�1) as the value of the particle–particle potential at

which to fix the effective hard-sphere diameter:

d4ii ¼ r4; Eii r
4

� �
¼ a: ð24Þ

The value of a has often been obtained by fitting

experimental results to a hard-particle model. This method

was effectively used for spheroidal particles [53] as well.

As was demonstrated in Refs. [33,54], the results of the

thermal energy approach are almost identical to those

predicted by the Barker–Henderson model when a=0.5,
which corresponds to the characteristic energy for one

component of the three-dimensional translation Brownian

motion.

4.2. Extension of the EHP approach to the bimodal systems

The EHP approach can easily be extended to a bimodal

system. To do so, it is convenient to introduce the EHP

center-to-center distance projection length dij* as a general-

ization of the EHP diameter dii*. Using the Barker–

Henderson approximation and the 2D RSA model we may

define the lengths by the equation

d4ij ¼
Z V

0

1� exp � Eij r2ð Þ
� �" #

dr2; i; j ¼ s; l; ð25Þ

where r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ai � aj

� �2q
is

the actual particle center-to-center distance projection

length.

On the other hand, using the thermal energy approxima-

tion we have

d4ij ¼ r42; Eij r
4
2

� �
¼ 0:5: ð26Þ

In the case of the 3D RSA model, the Eqs. (25) and (26)

involving the particle–particle energy Eij should be

replaced with the equations

d4ij ¼
Z V

0

1� exp � Eb r2ð Þ½ 
f gdr2; i; j ¼ s; l; ð27Þ

and

d4ij ¼ r42; Eb r42
� �

¼ 0:5; ð28Þ

respectively.

It should be noticed that because of a curvilinear

particle trajectory in the CT RSA model, the starting and
ending x, y particle coordinates are different in general.

The values obtained from Eqs. (27) and (28) correspond to

the starting points of the effective particle trajectories and

thus should be suitable for estimating the ASF. On the

other hand, considering the structural aspects of adsorption

requires taking into account the effective final positions of

the adsorbing particles. However, the main driving force

acting on the particles approaching the interface is not

diffusion but rather strong electrostatic attraction in the thin

layer adjacent to the interface. Therefore, the equilibrium

approach presented above does not seem to be reasonable

for predicting the effective final particle position. Instead

we can approximate the effective final distances with the

values that correspond to the effective starting positions

and can be found using Eq. (21). In what follows we will

use dij* to denote the final distance projection length

corresponding to the effective starting distance.

In general, the EHP dimensions calculated using the above

methods are nonadditive in the sense that the condition

dls*
2=d ll*d ss* , resulting from the simple geometry of two

contacting spheres on a planar surface, is not obeyed. This

situation makes further analysis more complicated. There-

fore, to ensure additivity of the effective particle dimensions,

we will choose effective radii in such a way to have the

system of the small EHPs and the effective interacting large

particles (see Fig. 12). From the symmetry condition we have

a4s ¼
1

2
d4ss; ð29Þ

and from the Pythagorean theorem d ls*
2 + (a l* �as*)

2 =

(al* +as*)
2 we get

a4l ¼
d42ls
4a4s

¼ d42ls
2d4ss

; ð30Þ

where variables with a star denote quantities corresponding to

the effective particles.

The effective size ratio is given as

k4 ¼ a4l
a4s

¼ d4ls
d4ss

� �2

; ð31Þ

(see Fig. 13). As can be seen, the increase of the interaction

range results in a decrease of the effective size ratio, in

agreement with intuition. Surface coverage of the effective

small and large particles equals

h4s ¼ hs
a4s
as

� �2

¼ hs
d4ss
2as

� �2

ð32Þ

and

h4l ¼ hl
a4l
al

� �2

¼ hl
d42ls

2ald4ss

� �2

: ð33Þ

In the high electrolyte-concentration limit, expressed

usually in terms of the large ja parameter, the electrostatic

interaction becomes weak and the parameters dij* tend to the
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Fig. 12. Schematic description of the effective hard small- and soft large-particles at a plane interface. Dashed lines denote shapes of the effective particles and

adsorption surface. Dash-dot lines show the effective interaction range of the large particles.
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nonzero values 2
ffiffiffiffiffiffiffiffi
aiaj

p
. Therefore, in this range of the ja

parameter, a logarithmic plot of the functions dij* (ja)
becomes unreadable. To avoid this inconvenience we will

present the effect of the ja parameter on the effective

particle size in terms of the effective minimum particle

surface-to-surface distance

h4ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d42ij þ ai � aj

� �2q
� ai � aj; ð34Þ

expected to be roughly proportional to the electric double-

layer thickness.
κal
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Fig. 13. Comparison of the effective particle size ratios as predicted by two

models of RSA for k =1 (reference curve, circles), k =2 (squares), k =4
(triangles). Open symbols refer to the model 2D (Eqs. (31) and (25)) and

filled ones to the model 3D (Eqs. (31) and (27)). Gray symbols denote

identical 2D and 3D results. Le l =1 /ja l.
5. Soft-particle systems

Here we focus on the effect of electrostatic interaction

on colloid adsorption at surfaces precovered with smaller

sized, like-charged particles. In our study we used most

often the CT RSA model, which seems to be the most

relevant. We also exploited the 2D and 3D RSA models to

allow us to compare the results obtained using the three

models. The definitions introduced in Section 2 for hard-

particle systems are valid for the soft particles as well.

However, interpretation of some of the variables becomes

much more difficult. It is especially the case when we are

dealing with the ASF that simple geometrical interpretation

is no longer valid. We should also remember that terms

such as ‘‘low’’ and ‘‘high’’ surface coverage refer rather to

the effective hard particles instead of to the real, soft ones.

Depending on the effective interaction range, this qualita-

tive distinguishing becomes appropriate for more or less

smaller surface coverage.

5.1. The simulation algorithm

Just as we did with the hard-particle algorithm, we

carried out simulations over a square simulation plane

with the usual periodic boundary conditions at its

perimeter and two subsidiary grids of square areas (cells)

of the size
ffiffiffi
2

p
as and

ffiffiffi
2

p
al [34]. This strategy enhanced

the scanning efficiency of the adsorbing particle environ-

ment performed at each simulation step. The simulations

were conducted in two main stages: first, adsorption of

smaller particles at the homogeneous interface was carried

out to a desired surface coverage hs; then, the larger

particles were adsorbed at the prepared heterogeneous

surface.

At both stages, the next particle to be adsorbed was

selected by choosing at random its xv and yv center

coordinates. Next, the vicinity of the virtual particle was

scanned and the minimum distance h0 to the interface,

resulting from the nonoverlapping condition, was calcula-
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ted. If the particle–interface potential at the minimum

distance was larger than Eip(h0)>�0.01, the virtual

particle was rejected and new particle coordinates were

generated. Otherwise, the location and height of the

kinetic barrier to adsorption Eb was calculated as

described above, and the starting point of the particle

trajectory was assumed to be at the barrier. If no energy

barrier existed at the chosen virtual coordinates xv, yv, the

component of the total force acting on the adsorbing

particle at the distance h0 perpendicular to the interface

was verified. When the interaction was attractive, the

particle was adsorbed at the point; otherwise, the starting

point was assumed to be at the minimum distance h0 and

the total particle potential was calculated there. Based on

the potential or barrier height, the probability of appear-

ing of the particle at the starting point of the trajectory

was calculated from the Boltzmann relationship. If the

probability was smaller than an additional random

number generated with uniform distribution within the

interval (0;1), then the adsorption attempt was rejected

and the next virtual coordinates were chosen. Otherwise,

the particle trajectory was traced to the point of contact

with the adsorption surface, where it was permanently

fixed with no consecutive motion allowed. In rare cases

the particle was driven far from the adsorption surface. If

the particle–interface interaction dropped to 10�2 kT a

new adsorption attempt was undertaken. Each particle

path was calculated using the CT RSA model as

described above, taking into account only neighboring

particles and limiting the tested vicinity to a circle that

includes all the adsorbed particles for which Eij could

potentially be larger than 0.01.

This algorithm enabled us to simulate adsorption

kinetics in terms of the dimensionless adsorption time

given by Eq. (5). As in the hard-particle simulations, the

maximum dimensionless time attained in our simulations

was 104, which required an overall number of trials on

the order of 109–1010. The extrapolation procedure used

in the case of hard particles for estimating jamming limits

was not valid in soft-particle simulations because of the

nonlinearity of adsorption kinetics at very long adsorption

times, as demonstrated in [33]. Therefore, we report the

coverage achieved after s =104 as the maximum surface

coverage. ASFs were calculated using the above algo-

rithm according to the method described by Schaaf and

Talbot [5], as described in Section 2.

5.2. Analytical approximation

Just as in the case of hard-particle systems, we tested the

results of the simulations in terms of the equilibrium

adsorption approach. The extension of the EHP approxima-

tion to bimodal systems, described in Section 4, can be

exploited to derive analytical formulae predicting the ASF

for the effective, interacting large particle at the interface

covered with the effective hard, small spheres. Starting from
Eq. (9) and using elementary geometry, it is not difficult to

find that

Bl ffi 1� 4
d4ll
2a4l

� �2

h4l � 4k4h4s : ð35Þ

Eqs. (35) and (8) can be matched when

hld ¼
d4ll
2a4l

� �2

h4l ; hsd ¼ h4s ;

and

c ¼ 2
ffiffiffiffiffi
k4

p
� 1: ð36Þ

Substituting Eqs. (30)–(33) we get

hld ¼
d4ll
2al

� �2

hl; hsd ¼
d4ss
2as

� �2

hs;

and

c ¼ 2
d4ls
d4ss

� 1: ð37Þ

This result drives us to the conclusion that the large-sphere

ASF in the bimodal interacting spherical-particle system in

the low coverage limit can be approximated by the equation

Bl ¼ 1� hdð Þexp � 3hld þ c c þ 2ð Þhsd
1� hd

� hld þ chsd
1� hd

� �2" #
;

ð38Þ

where variables hld, hsd, and c are defined by Eq. (37).

The limiting analytical expression for the large-particle

ASF corresponding to the initial adsorption flux of the large

particles at surfaces precovered with the small ones, derived

at hl =0, is

B0
l ¼ 1� hsdð Þexp � c c þ 2ð Þhsd

1� hsd
� chsd

1� hsd

� �2
" #

: ð39Þ

Eqs. (38) and (39) can further be exploited for calculating

adsorption kinetics in the low surface coverage limit, as

described above.

5.3. Results of computation

We used the CT RSA algorithm to perform extensive

computer simulations of soft-particle adsorption at pre-

covered surfaces. The ASFs, jamming limits, and pair-

correlation functions were obtained for the following

values of the system’s physical parameters: the large- and

small-particle density and surface potential ql =qs=0.05 g/

cm3 and wl =ws=50 mV, respectively; the adsorption

surface potential wp=�100 mV; the absolute temperature

T=293 K; the dielectric constant e =78.54; and the large

particle radius al =500 nm. We conducted computations for

three values of the small-particle radius: as=125, 250, and



101 102 103

H
ls*

10-2

10-1

100

Lel
10-1 10-2 10-3

1

2

3

alκ

Fig. 14. Comparison of the effective minimum distances between small and

large particle at a plane interface, calculated according to the 2D model in

connection with two EHP approximations. Solid lines depict the Barker–

Henderson approach (Eqs. (34) and (25)) and dashed ones represent the

thermal energy approach (Eqs. (34) and (26)), respectively. The effective

distances H ls* correspond to k =1 (1), k =2 (2), and k =4 (3).
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Fig. 15. Comparison of the effective minimum distances between two small

particles at a plane interface, calculated according to the 2D model in

connection with two EHP approximations. Solid lines depict the Barker–

Henderson approach (Eqs. (34) and (25)) and dashed ones represent the

linearized thermal energy approach (Eqs. (40)), respectively. The effective

distances H ss* correspond to as=500 nm (1), as=250 nm (2), and as=125

nm (3). Les=1 /jas.
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500 nm, corresponding to the parameter k =4, 2, and 1. A

few values of electrolyte concentration were chosen to

demonstrate the effect of ionic strength. The values

corresponded to the parameters jai =4, 8, 16, 32, 64,

125, 250, 500, 1000, and 2000. The effect of the small-

particle surface coverage was verified for hs=0 (reference

curves for monodisperse particle system), 0.02, 0.04, and

0.08. We compared the computations with the results

stemming from the SPT extended to interacting spheres in

3D. We also exploited the two older models, 2D and 3D

RSA, in the computations to allow comparison with CT

RSA predicted results. It should be noted that at these

particle sizes and density, the gravitational force acting on

the particle is below 0.03 kT /ai and therefore was

neglected in our computations.

5.3.1. Effective minimum particle surface-to-surface

distance

We studied the effect of ionic strength on the effective

minimum particle surface-to-surface distance by using the

three models of adsorption and the two approximations of

the EHP. Fig. 14 presents the dependence of the normalized

effective minimum distance Hls* =hls* /al on the jal param-

eter for three values of k, as predicted by the 2D RSA model

in connection with the two EHP approximations. The results

based on Eq. (25) (the Barker–Henderson approach) and

Eq. (26) (the thermal energy approach) clearly demonstrate
that both approaches give almost identical results. As can be

seen, the effect of k is minor even at small values of jal,
which suggests that the interface has little effect on particle

adsorption, in line with the model’s assumptions. The weak

effect of the particle–interface interaction can also be

deduced from the fact that the effective particle distances

correspond well to the thermal energy 0.5 kT along the

whole range of the parameter jal. This value confirms the

assumption of particle lateral equilibrium at the interface

and results from neglecting the fast, curvilinear particle

transport in the thin surface-force layer adjacent to the

adsorption surface. In the presented range of the jal
parameter, the dependence Hls*(jal) is almost linear. The

results are limited to the range corresponding to jas�4 to

avoid inaccuracies resulting from many-body interactions.

The linearity is more obvious in Fig. 15 where the

normalized effective minimum distance H ss* =hss* /as as a

function of the jas parameter is depicted, as obtained from

the linearized thermal energy approach, neglecting the

preexponential term in Eq. (18). According to this approach,

the effective minimum distance, corresponding to 0.5 kT

particle–particle energy, is given by the equation

H4
ss ¼

1

jas
ln

1

2
e
kT

e2
Y 2
s as

� �
: ð40Þ

As can be seen, the effective minimum distance can be

calculated analytically and is proportional to the parameter
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Les=1 /jas. Comparison of the linearized approach and the

nonlinear Barker–Henderson approximation shows that

deviations of the function Hss* (jas) from linearity, as

predicted from the 2D RSA model, are small and can be

observed just at the small jas. The plots presented in Fig. 15
also demonstrate that the linearized thermal energy ap-

proach offers a good approximation of the effective

minimum particle surface-to-surface distance.

As discussed above, the PS approximation exploited in

the 2D RSA model seems to be valid just in the case of the

large jai. Modeling adsorption in a system characterized by

a larger interaction range, especially in a bimodal system,

requires another approach. That is demonstrated in the next

two figures, where the effect of ionic strength on the

effective minimum interparticle distance is presented in the

monodisperse and bimodal systems, using the 2D, 3D, and

CT RSA models.

As can be seen in Fig. 16, in the case of monodisperse

systems at high ionic strength (jas>30), both 2D and 3D

models predict almost identical effective minimum dis-

tances, corresponding to the lateral interaction of about 0.5

kT. As discussed above, the value results from neglecting

the nonlinear particle transport at the boundary layer. It

should be kept in mind, however, that assuming the linear

particle trajectories in the 3D model could result in artificial

lowering of the effective interaction range. In fact, one can
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Fig. 16. Comparison of the effective minimum distances between two small

particles at a plane interface, calculated according to the Barker–Henderson

approximation in connection with three RSA models. Solid lines depict the

2D model (Eqs. (34) and (25)), dotted lines denote the 3D model (Eqs. (34)

and (27)), and dashed ones represent the CT model (Eqs. (34) and (21)),

respectively. The effective distances H ss* correspond to as=500 nm (1),

as=250 nm (2), and as=125 nm (3).
deduce that the net force acting on the particle at the energy

barrier Eb is of the order jasEb in the kT /as units and

rapidly increases when the particle approaches the interface

[34]. Taking into account that the barrier height

corresponding to the effective particle distance is about

Eb�0.5, one can deduce that at jas>10, the driving force is
much larger than the kT /as unit, which is characteristic for

thermal motion [19]. Therefore, Brownian motion can be

neglected in considering fast particle transport through the

thin boundary layer at jas>10. Consequently, the equilib-

rium value of the interaction energy at the effective distance,

as predicted by the 2D and 3D models, seems to have no

solid support in theory.

On the other hand, in this range of jas the CT model

predicts larger effective distances corresponding to the

weaker particle–particle interaction. This prediction results

from the fact that at the very beginning of the particle

trajectory the lateral, repulsive component of the net force

dominates and moves the particle out of its quasi-equilibrium

starting position. Simultaneously the attractive component,

perpendicular to the interface, increases rapidly and moves

the particle toward the surface. At condition jas >10,
however, the boundary-layer thickness is much smaller than

the particle radius, and therefore the adsorbing particle cannot

approach the adsorbed one closely during the small displace-

ment. As a result, the final particle positions correspond to the

interactions weaker than the thermal energy and to effective

particle distances larger than predicted by the 2D and 3D

models. It should be noted that at jas>100, the differences
between the CT and 2D or 3D results become small in

comparison to the particle size and can be hard to detect

experimentally. Thus one can claim that in the short

interaction range, all the models offer a reasonable accuracy.

At jas<10 the net driving force at the energy barrier

corresponding to the effective particle surface-to-surface

distance becomes comparable to the kT /as, unit and

Brownian motion may have some effect on particle

adsorption. It should be noted, however, that just in this

range of jas the effective distances correspond to the thermal

energy, which suggests that the CT model offers a quite

reasonable approximation even at the interaction range

comparable to the particle size, in spite of neglecting

Brownian motion. At this range of interactions the effective

particle distances predicted with the CT model become

smaller than those predicted by the 2D model and correspond

to the lateral repulsion few times stronger than the thermal

energy. This final position of the adsorbing particle results

from the thicker surface-force boundary layer. At the thicker

layer, the particle located at the effective energy barrier there

is at a relatively large distance from the interface. Also, the

particle center-to-center distance projection length r2 is

relatively small in such a position. After a short distance,

when the adsorbing particle is repulsed from its starting

position and moves approximately parallel to the interface,

the dominating attractive force directs the particle almost

perpendicularly to the interface. As a result, the adsorbing
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Fig. 17. Comparison of the effective minimum distances between small and

large particle at a plane interface, calculated according to the Barker–

Henderson approximation in connection with three RSA models. Solid lines

depict the 2D model (Eqs. (34) and (25)), dotted lines denote the 3D model

(Eqs. (34) and (27)), and dashed ones represent the CT model (Eqs. (34)

and (21)), respectively. The effective distances H ls* correspond to k =1 (1),

k =2 (2), and k =4 (3).
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Fig. 18. Comparison of the ASFs B l(hl) computed with three RSA models

for the particle size ratio k =2, parameter jal =8, and two values of the

small-particle surface coverage: hs=0 (circles, reference curve) and

hs=0.8 (triangles). Open, gray and black symbols correspond to the

results predicted with the 2D, 3D, and CT models, respectively, calculated

with Eq. (6).
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particle approaches the deposited particle closely and the

final position can correspond to a relatively high particle–

particle potential.

As discussed above, the effective distance calculated with

the 2D model corresponds to the lateral interaction on the

order of thermal energy even at the smallest jas parameter,

when the boundary-layer thickness becomes comparable to

the particle dimension and one could expect the interface to

have a strong effect. That value of the effective distance

suggests overestimation of the results arising from the

assumption of the constant parameter a =0.5. The results

obtained with the 3D model, on the other hand,

corresponding to a lateral repulsion a few times stronger

than kT, are evidently underestimated because of the

assumption of linear particle trajectory.

The effect of the jal parameter on the effective minimum

particle surface-to-surface distance H ls* in the bimodal

systems is presented in Fig. 17. As discussed above, the

2D RSA model predicts the interface to have little effect on

particle adsorption even at low ionic strength. On the other

hand, the effect is evident in case of the 3D and CT models

in the whole range of jal. In agreement with intuition, the

large particle can be deposited next to the small one even at

a lateral repulsion on the order of 10 kT, as predicted by the

CT model. This behavior results from the strong attraction

of the large particle to the interface, which partially
compensates the repulsion exerted by the small particle.

On the other hand, the effective distances calculated with

the 3D model correspond to the lateral interaction one to

several orders of magnitude stronger than the thermal

energy. Therefore, the linear trajectory assumption in the

3D model does not seem reasonable, driving us to the

conclusion that the CT RSA model offers the best

description of colloid-particle adsorption. It should be noted

that hij* obtained from the CT RSA model refers to the final

position of the adsorbing particle and thus conveys

information about the monolayer structure. On the other

hand, hij* calculated from the 3D RSA model corresponds to

the ASF, almost identical for both 3D and CT processes, and

so allows kinetic characterization of the systems. This

capability is discussed in more detail below.

5.3.2. Available surface function

Comparison of the ASFs derived from the 2D, 3D, and

CT RSA models and computed for the parameters k=2 and

jal =8 is presented in Fig. 18. The functions, calculated

according to Eq. (6), refer to the parameter hs=0 (reference

curve) and hs=0.08. In agreement with intuition, both 3D

and CT models give identical results at hs=0 and low

surface coverage of the large particle, which results from

the similar construction of the algorithms. A small

difference suggesting different monolayer structures

becomes visible at hl =0.15. The difference grows with

increase of the surface coverage, so one could expect
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Fig. 19. Variation of the initial adsorption flux Bl
0 with the parameter jal

predicted by the model CT (Eq. (6)). Solid and dashed lines correspond to

the small particle surface coverage hs=0.02 and hs=0.08, respectively. The

particle size ratio equals k =1 (circles), k =2 (squares), and k =4 (triangles).
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somewhat different jamming limits. As can be seen, the

ASFs are always larger than their 2D counterparts,

although the differences are very small at low surface

coverage. This difference results from the fact that, unlike

the 2D model, the 3D and CT models estimate the

adsorption probability by taking into account the value of

the particle potential calculated at some distance from the

interface, and therefore at larger particle–particle distance.

Moreover, the interparticle repulsion is partially neutralized

because of the attraction to the interface. The 2D model

neglects the three-dimensional effects. Therefore, it seems

that application of the 2D model is limited to the

monodisperse systems and low to medium surface cover-

age or high ionic strength (jas>100). On the contrary, the

3D model seems suitable for computing the kinetic aspects

of adsorption in the full range of the jai parameters.

A similar behavior of the ASFs may be observed at

hs=0.08. Because of the different structures of the small

particles, however, a small difference between the 3D and

CT models is visible at the low surface coverage hl as well.
Also, the difference between the predicted ASFs for the 2D

and 3D models is much larger in the bimodal system and

reaches three orders of magnitude. This discrepancy

suggests that unlike the 3D model, the 2D one is useless

in the case of bimodal systems. This conclusion is consistent

with the experimental results published in Ref. [27].

Although the authors of this paper suggested that the

reduced blocking effect observed during deposition on the

precovered surface could result from the small-colloid-

particle charge migration at the mica surface, in view of the

results presented here we can explain the observed effect as

being based on the reduction of the repulsion between

different sized particles at the charged adsorption surface.

The result, which can be considered as an aspect of the

reverse salt effect [55], consisted in the enhancement of the

particle deposition rate under attractive double-layer forces

and experimentally proved at the end of 1980s, is more

evident in Fig. 19. The figure presents the initial deposition

flux B l
0 as a function of the ja l parameter calculated

according to the CT model for hs=0.02 and 0.08, at k =1,
2, and 4. At the hard-particle limit (jal =2000), the results are
in agreement with approximate Eq. (9), apart from the two

lowest curves corresponding to k =2 and 4 at hs=0.08, when
4khs>0.5 and the assumption of low surface coverage does

not apply anymore. In the long-interaction-range limit, on the

other hand, the ASF’s behavior depends on the k parameter

and is consistent with the dependences Hls*(jal), discussed
above. At k =1, when Hls* is on the order of one, the ASFs

monotonically and relatively quickly decrease with jal,
whichmeans that the particle–interface attraction has aminor

effect on surface blocking. At k =2, when Hls* reaches few

tenths, the large particle can be adsorbed at a much shorter

distance to the small sphere, and so the blocking effect is

reduced because of the stronger particle–surface attraction.

Indeed, the corresponding ASFs’ slopes are smaller than

those when k=1, which confirms the statement. Finally, at
k =4 one can observe that Bl
0 changes very little with jal,

which means that the interparticle repulsion is neutralized by

the attraction to the interface. As a matter of fact, the

corresponding Hls* is below 0.09, which confirms the weak

blocking effect. Moreover, the value of Bl
0 computed at k =4,

hs=0.02, and jal =16, is larger than the corresponding hard-
particle limit. This fact means that because of attraction to the

interface, the particle can be adsorbed even if at the starting

position it is located partially above the small particle at

r2 < 2
ffiffiffiffiffiffiffiffi
alas

p
, which would be impossible in a hard-particle

system. It should also be noted that the effect of attraction to

the interface is smaller at the higher coverage hs, which

results from the enhanced repulsion exerted by the larger

number of the smaller particles.

The effect of the small-particle surface coverage and

particle size ratio on the Bl
0 ASF is investigated in Fig. 20.

Both CT-model and equilibrium results (Eq. (39)) are

presented there for jal =16 and k =1 (reference system),

2, and 4. The results computed using the two models are

essentially identical in the low-surface coverage limit, which

confirms robustness of the software used for simulations. At

higher coverage, however, the equilibrium ASFs achieve

larger values, and the differences increase with the coverage

hs. As in the hard-particle systems, the ASFs rapidly

decrease with an increase in the k parameter. A comparison

of Fig. 20 with Fig. 1 makes it evident that the ASF’s slope

changes more in the soft-particle systems. At the low

coverage hs, both hard- and soft-system ASFs have similar
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Fig. 20. Variation of the initial adsorption flux B l
0 with the small particle

surface coverage hs for the particle size ratio k =1 (circles), k =2 (squares),

and k =4 (triangles). Solid and dashed lines denote results obtained in
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slopes, which results from the mutual compensation of the

repulsive and attractive electrostatic interaction. At the

higher coverage, however, the interaction is dominated by

the repulsion exerted by a larger number of the small

particles, as discussed above, which results in the larger

ASFs’ slopes. In this range of coverage the electrostatic

interaction can significantly increase the surface-poisoning

effect, making it easier to detect the presence of smaller

(invisible) particles by measuring the initial adsorption flux

of larger particles, as discussed in Section 2.

However, a quantitative determination of the surface

coverage of these particles becomes possible only by

considering the coupling between the surface-layer transport

(described by the function Bl
0) and the bulk transport

(governed by convective diffusion of particles). According

to the surface-force boundary-layer approximation [40], the

actual initial particle flux j l
0 in this case is governed by the

generalized blocking function

B
; 0
l hsð Þ ¼ j0l =j

0;0
l ¼ KB0

l hsð Þ
1þ K � 1ð ÞB0

l hsð Þ ; ð41Þ

where j l
0,0 is the initial adsorption flux to the homogeneous

surface (at hs=0) and K =ka /kb, ka is the kinetic adsorption

constant given by the equation

ka ¼
Z d

dm

exp /lp hV
� �� �

Dl hVð Þ dhV

( )�1

; ð42Þ

where d is the thickness of the adsorbed small particle layer,

/lp is the particle–interface potential, Dl is the position-
dependent diffusion coefficient of the large particle,

hV=h +dm, and kb is the bulk mass transfer rate. This rate

can be calculated analytically or numerically for the

stationary transport to uniformly accessible surfaces such

as a rotating disk, impinging jet cells, etc. [36,56].

Expressing the diffusion coefficient as Dl(hV)=Dl
VhV /

(hV+al) [14] and assuming the CT model of the electrostatic

interaction, we can substitute /lp=Elp and d�2as+hls
0*,

where hls
0* is the effective minimum particle surface-to-

surface distance calculated for the isolated system of the

small and large particles, located far from the interface.

Then ka can be evaluated explicitly to give

K ¼ Sh ln
2=k þ H04

ls

H4
lp

þ 2

k
þ H04

ls � H4
lp

 !" #�1

; ð43Þ

where Sh =kbal /Dl
V is the dimensionless mass transfer

Sherwood number, Hls
0*=hls

0* /al, and H lp* =hlp* /al is the

particle–interface gap width corresponding to Elp(hlp*)=

�0.5. On the other hand, the PS approximation exploited in

the 2D model gives

K ¼ Sh ln
d
dm

þ 2

k

� �� ��1

: ð44Þ

As can be deduced from Eq. (41), the large particle flux

(normalized to the flux for an uncovered surface) depends

on two unknown parameters only,

j0l =j
0;0
l ¼ f k; hsð Þ; ð45Þ

which suggests that by experimental measurements of j l
0 / j l

0,0

for various large particle sizes, we can determine both

coverage hs and radius as of the small particle using a

nonlinear fitting procedure.

Experimental data presented in Fig. 21, obtained for latex

particles [3], confirm the validity of the above model, as

well as the CT approach, for predicting the adsorption flux

of larger particles at precovered surfaces. The experiments

were conducted using the circular impinging jet cell and

particles of 0.68 and 1.48 Am in diameter at I =10�4 M and

the Reynolds number Re =4. The dimensionless parameters

were equal k =2.2 and jal =24.55. The surface potentials

ws=wl =�50 mV and wp=50 mV were assumed in the

computer simulation, according to the experimental condi-

tions, which gave the effective distances Hls
0*=0.305 and

Hlp* =0.360. The Sherwood number obtained by the numer-

ical solution of the convective diffusion equation was

Sh =0.0822. Based on Eq. (43) we can calculate K =5.88.

The theoretical curve plotted in Fig. 21 is a good

approximation of the experimental results in the whole

range of the coverage hs. The only large discrepancy (one

order of magnitude) between the observed and calculated

value of the initial flux appears at hs=0.27, which can be

explained by considering small-particle size polydispersity.

As estimated later on, the maximum coverage of the small

particle is about 0.34 and so the hs should be considered
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Fig. 21. Comparison of the theoretical and experimental, normalized initial

adsorption flux, as a function of the small-particle surface coverage hs.

Gray symbols (triangles and squares) depict two series of experiments. The

solid and dashed lines denote results derived from the surface-force

boundary-layer approximation (Eq. (41)) exploiting the B l
0(hs) functions

calculated numerically with the 2D and CT model, respectively Eq. (6). See

more detail in text.
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Fig. 22. Comparison of the ASF Bl(h l) calculated using the CT model (solid

lines, Eq. (6)) and the equilibrium SPT (dashed lines, Eq. (38)) for the

particle size ratio k =2 and the parameter jal =8. Open symbols denote

different values of the small-particle surface coverage: hs=0 (reference

curve, circles), hs =0.02 (squares), hs =0.04 (triangles up), hs =0.08

(triangles down).
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high. At high surface concentration, however, particle size

polydispersity plays a significant role. As demonstrated in

Ref. [26], assuming the constant particle diameter at a size

polydispersity of 10% results in a 10% overestimation of the

actual maximum surface coverage. Therefore one could

expect that the actual hs is about 0.25; then the experimental

result agrees well with theory.

On the contrary, the curve predicted by the 2D model and

calculated for K =2.5, according to Refs. [31,40], under-

estimates the experimental results at hs>0.2 by one order of

magnitude and more, which results from overestimating of

the blocking effect, as discussed above. A reasonably good

agreement of the 2D model and the experimental results at

the low surface coverage may be a consequence of the fact

that in this regime, the overall transport rate is determined

mostly by convective diffusion, due to a relatively small

exclusion effect, and thus the inaccuracy introduced by the

function Bl
0 is minor.

Fig. 22 presents the ASFs Bl(hl) computed for our model

systems. The functions were calculated using the CT RSA

model and the equilibrium equation (38) for the bimodal

systems characterized by the parameters k =2 and jal =8 at

four different values of the coverage: hs=0 (reference

curve), 0.02, 0.04, and 0.08. Based on the plots conclusions

similar to these found in Fig. 20 can be drawn. As can be

seen, both approaches give the same results within the limit

of low surface coverage hs and hl. In the case of hs=0.08,

however, the difference between both curves is evident even
at hl =0. This difference results from the fact that the

effective coverage corresponding to the system of the small

particles is about 0.15, as can be estimated based on Fig. 16.

In a similar way we can estimate the effective size and

coverage corresponding to the other curves. Therefore, we

conclude that electrostatic interaction can significantly

increase blocking effects in bimodal systems, especially at

small k and high surface coverage, which becomes even

more evident if we compare Figs. 21 and 3.

5.3.3. Maximum surface coverage

As with ASFs, the maximum surface coverage that

determines monolayer capacity is of great practical interest.

As demonstrated in a number of earlier studies, the quantity

depends very much on ionic strength. However, quantitative

estimations of the dependence, published in scientific

papers, are not consistent and change with the model of

adsorption used in simulations or with the experimental

procedure. The results stemming from the 2D, 3D, and CT

models are compared in Fig. 23. They were obtained for the

parameter k =2 at three values of the small-particle

coverage: hs=0.02, 0.04, and 0.08. As mentioned earlier,

the computations were conducted for a few values of the

parameter jal and stopped after the dimensionless time

s =104. The reported values of hmx correspond to that time.

At high ionic strength, corresponding to the large

parameter jal, all the models predict the same values of the

maximum coverage, in agreement with intuition. This is the
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Fig. 23. Effect of the ja l parameter on the maximum surface coverage hmx

predicted by three RSA models: 2D (open symbols), 3D (gray symbols),

and CT (black symbols) at the particle size ratio k =2. Circles, squares and
triangles correspond to the small-particle surface coverage hs=0.02,

hs=0.04, and hs=0.08, respectively.
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Fig. 24. Effect of the ja l parameter on the maximum surface coverage hmx

predicted by the CT model for three values of the particle size ratio: k =1
(circles), k =2 (squares), and k =4 (triangles). Solid and dashed lines denote
results obtained at the small-particle surface coverage hs =0.02 and

hs=0.08, respectively.
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hard-particle limit that can be determined using the algorithm

described in Section 2. At the range of the low jal parameter,

however, the results can be distinguished. Again, the plots

obtained with the 3D and CT models are similar, whereas the

2D predicted results are much lower, which results from the

overestimated blocking effects. Therefore, one can conclude

that unlike the 2D model, the 3D model gives a reasonably

good approximation of the maximum surface coverage at a

lower computational cost, when compared to the CT model.

The results are somewhat overestimated because of the

assumption of the linear particle trajectory, which can result

in slightly higher coverage hmx. The maximum coverage hmx

decreases with ionic strength and with increase of the small-

particle coverage hs.
The last conclusion can be drawn based on Fig. 24 as

well. The results presented there were obtained using the

CT model for two values of the coverage: hs=0.02 and

0.08; and for three values of the parameter k: 1, 2, and 4.

As can be seen, in the presented range of jal the effect of

the parameter k on the maximum surface coverage

decreases with jal. The trend is consistent with the

decrease of the effective particle size ratio k* at lower

ionic strength, as described in Section 4. It is clear,

however, that the lowering of the effective size ratio does

not explain why the plotted curves cross over one another.

Obviously, at high ionic strength, when the particles can be

considered hard, the maximum coverage decreases with
increase of k, as discussed in Section 2. The opposite

effect should be detectable at low ionic strength. It seems

to result from the interplay between the particle–particle

repulsion and the particle–interface attraction, as discussed

above. At sufficiently low electrolyte concentrations the

smaller particles, corresponding to the larger k, allow more

efficient interception of the large particle because of the

‘‘rolling’’ mechanism.

5.3.4. Pair-correlation function

Electrolyte ionic strength has a great impact not only on

the kinetic aspects of large-particle adsorption but on

controlling the formed monolayer structure as well. As

was demonstrated above, lowering of the jai parameter

results in a significant increase of the effective minimum

particle surface-to-surface distance, which affects the pair-

correlation function. In a real system, the function can be

determined using experimental techniques. Therefore, by

manipulating ionic strength we can easily verify a particle-

deposition model in respect to both kinetics and structure. In

actuality, the experimental determination of the correlation

function is a difficult task because of the large number of

particles needed to eliminate fluctuations and obtain a

reasonably smooth curve. Moreover, some of the methods,

like optical microscopy, have limited accuracy because of

low image resolution, rarely exceeding few tens of pixels

per particle diameter. As demonstrated in Ref. [34],
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Fig. 26. Comparison of radial distribution functions g l(r /a l) calculated

using Eq. (3), based on the simulation data obtained with three RSA

models: 2D (open circles), 3D (gray circles), and CT (black circles). The

results refer to the bimodal system at the particle size ratio k =4, small- and

large-particle surface coverage hs=0.08 and hs=0.146, and the parameter

ja l =16.
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fluctuations present at such resolution are still large. The

difficulties, however, are technical in nature and can be

overcome with the further development of the experimental

technique and electronics.

To begin with, Fig. 25 presents a comparison of the pair-

correlation functions of the monodisperse system computed

for the 2D, 3D, and CT models according to Eq. (3) for the

following parameters: al =500 nm, jal =10, and hl =0.25.
As can be seen, the primary peaks are located at rp /al =2.9,

2.7, and 2.85, as predicted by the 2D, 3D, and CT models,

respectively. The positions correspond well to the effective

minimum particle surface-to-surface distances, as presented

in Fig. 16, and are equal to 2.65, 2.5, and 2.7, respectively.

Assuming that the effective hard-particle radius equals half

of the effective minimum distance, al* =0.5hll* , all the peaks

are located in the interval rp /al*Z (2.1; 2.2), which agrees

with the hard-particle result. The high maximum evident in

the figure, obtained with the CT model, results from

including the ‘‘rolling’’ effect into the model. In agreement

with the algorithm and ASFs presented above, the correla-

tion function computed with the 3D model is shifted toward

the smaller interparticle distance, corresponding to the

stronger lateral repulsion. At the particle–particle distance

larger than three particle radii, both 3D and CT models give

very similar results. All the three functions are basically

indistinguishable at the distance larger than four radii,

predicting the same position of the shallow minimum at r /

al =4.8.

We computed the plots depicted in the next figure using

the three models at the following parameters of the

bimodal system: k =4, jal =16, hs=0.08, and hl =0.146.

The primary maxima obtained for higher ionic strength are

located at the smaller distances rp /al =2.45, 2.55, and 2.57

according to the 2D, 3D, and CT models, respectively. The
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Fig. 25. Comparison of radial distribution functions g l(r /a l) calculated

using Eq. (3), based on the simulation data obtained with three RSA

models: 2D (open circles), 3D (gray circles), and CT (black circles). The

results refer to the monodisperse system (hs=0) at the parameter jal =10
and the large-particle surface coverage hs=0.25.
corresponding effective minimum distances are equal to

2.42, 2.38, and 2.5 and comply with the peaks_ position.

The shift of the primary maximum toward the shorter

interparticle distance as well as the appearance of the

secondary peak of the correlation function demonstrates

that the system computed with the 2D model is in the

range of the high surface coverage, achieved at a relatively

long adsorption time. Again, this effect is a consequence

of the stronger blocking effects in the model, resulting in

the lower maximum coverage. It should be noted that the

secondary maximum is located just one particle radius

from the primary maximum, which suggests that its
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Fig. 27. Radial distribution functions g l(r /al) calculated using Eq. (3),

based on the data derived from the CT simulations for the particle size ratio

k =1 (circles), k =2 (squares), and k =4 (triangles). The curves were

computed at the small-particle surface coverage hs=0.08 and the parameter

ja l =16, close to jamming (s =104).
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appearance is caused by the presence of the small particles.

As in the monodisperse system, the CT model predicts a

relatively high and sharp primary maximum reflecting the

‘‘particle-rolling’’ effect. The 3D correlation function is

shifted toward the smaller distance because it neglects that

effect. The distance at which both functions can be

considered identical is shorter than it was in case of the

monodisperse systems and corresponds to the shorter

effective minimum particle surface-to-surface distance at

higher ionic strength (Fig. 26).

The pair-correlation functions appearing in Fig. 27

demonstrate the effect of particle size ratio as predicted by

the model CT RSA at jal =16, hs=0.08, and hl =hmx. In
agreement with intuition, the gl function maximum position

at r /al =2.5 does not depend on k and corresponds very

well to the effective minimum particle distance. On the other

hand, the peak height evidently decreases with an increase

of the k parameter. This effect can result from the fact that

the tinier particles, more dispersed over the adsorption

surface, cause larger irregularities in the large-particle

structure. A very low secondary peak can be observed for

k =2 at the distance r /al =3.5, as can the heightened values

of the correlation function corresponding to k =4 at the

distance r /al =3. As discussed above, the position of the

deviations from the monodisperse functions suggests that

their appearance is caused by the preadsorbed small

particles. However, the correlation function obtained for

k =1, with the secondary maximum located at a distance two

times larger than the primary one, seems to be indistin-

guishable from its monodisperse counterpart.

The effect of ionic strength on correlation functions is

presented in Fig. 28. The functions were computed for the

parameters k =4, hs=0.08, and hl =hmx at three values of the
parameter jal =16, 32, and 64, using the CT model. The
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Fig. 28. Radial distribution functions g l(r /a l) calculated using Eq. (3),

based on the data derived from the CT simulations for the particle size ratio

k =4 at three values of the parameter jal =16 (black circles), ja l =32 (gray

squares), and ja l =64 (open triangles). The curves were computed at the

small-particle surface coverage hs=0.08, close to jamming (s =104).
primary maxima are located at r /al =2.5, 2.3, and 2.15,

respectively, and comply with the effective minimum

distance depicted in Fig. 16. The peaks corresponding to

the smaller parameter jal are lower and more diffused, in

agreement with intuition. The heightened values of the

correlation functions to the right of the peaks suggest an

effect caused by the smaller, preadsorbed particles. Based

on the figure we may draw a more general conclusion that

the presence of smaller particles at the adsorption surface

can be manifested by an increase of the correlation function

at the distance of about r = rpp+2dls* , where rpp is the

primary peak location. The effect becomes significant,

however, at the higher coverage hl.
6. Conclusion

The analysis of the extended RSA models and their

results clearly suggests that these models are suitable for

quantitative studies of adsorption on precovered surfaces in

terms of the effective minimum particle surface-to-surface

distance, ASF, correlation function, and maximum cover-

age. In connection with the surface-force boundary-layer

approximation, the models allow determination of the

adsorption kinetics as well.

Adsorption of colloid or nanoparticles at high ionic

strength (jai >100) can accurately be described by the

hard-sphere RSA model, considering geometry-based

particle overlapping only. At lower ionic strength, incor-

porating the electrostatic interaction into the model

becomes necessary. The simplest version of the model

allowing the soft interaction is the 2D RSA model, which

assumes the PS particle–interface interaction and considers

just the lateral particle–particle interaction. Consequently,

this model overestimates the blocking effect and predicts

the quasi-equilibrium pair-correlation function. Therefore,

application of this model seems to be restricted to

monodisperse systems and low surface coverage, as well

as for systems where the particle-adsorption surface

interaction is very short ranged. The more sophisticated

model, 3D RSA, which considers the electrostatic interac-

tion particle–interface, adequately describes the kinetic

aspects of adsorption in the full range of the jai parameter

(jai >4). However, because the linear particle trajectory is

assumed, this model does not predict the correct correla-

tion function, especially at high surface coverage. It seems

that at present the best tool for studying the kinetic and

structural aspects of adsorption is the CT RSA model,

which includes the electrostatic particle–interface interac-

tion and considers the curvilinear particle trajectory at a

relatively low computational cost. Depending on require-

ments, the model can be modified to include additional

effects such as external forces or convection or Brownian

motion.

Computation results suggest that minimal surface cover-

age by small particles can effectively block colloid deposi-
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tion. The effect grows with the coverage hs and particle size

ratio k. Electrical interaction can enhance the effect, too,

especially at the short interaction range (jai>10) with a small

k parameter, when the interparticle repulsion dominates over

the particle–interface attraction. In the case of jai <10 and a
large particle-size asymmetry, however, the computations

suggest domination of the attraction to the adsorption surface,

which can result in a diminishing of the blocking effect, even

in comparison with hard-particle systems.

The presence of small particles at the adsorption surface

can be detected not only by measuring the adsorption flux or

the maximum coverage, but also by determining the large-

particle radial correlation function, which becomes higher at

the separation distance corresponding to two large particles

with one small particle in between. In the case of the large

coverage hl, a low secondary peak can even appear to the

right of the primary maximum.

The application of the EHP concept allows extension of

the SPT for bimodal systems of soft particles. The derived

analytical formulae for the ASF are a good approximation of

the numerical results in the range of low surface coverage.
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Sci 1989;130:578–87.
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