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Abstract

Recent theoretical and experimental data concerning colloid particle deposition from well-defined flows onto
solid/liquid interfaces were reviewed. The macroscopic flow fields in the vicinity of the spherical and cylindrical
collector (both isolated and forming a structured layer) were presented. Analogous solutions for the impinging-jet
cells of (i) radial symmetry (radial impinging-jet cell RIJ) and (ii) plane symmetry (the slot impinging-jet cell SIJ) were
also discussed. Similarities and differences between these flows are pointed out. The method of decomposing the
macroscopic flows into local flows of simple geometry like shearing and stagnation flows was exposed. The
microscopic flows are discussed in some detail, especially those connected with the motion of a spherical particle
parallel and perpendicular to a solid wall. Using the local flow distributions the governing continuity equation is
formulated, incorporating the convective transport in the bulk and the specific force dominated transport at the
surface. Approximate analytical models aimed at decoupling these transfer steps are described, in particular the
surface force boundary layer approximation (SFBLA). Limiting analytical solutions for the perfect sink boundary
conditions were given. A procedure of extending the convective diffusion theory to non-linear adsorption regimes
governed by the steric barrier due to adsorbed particles, was also presented. The role of the electro-hydrodynamic
coupling leading to the hydrodynamic scattering effect in the blocking phenomena was discussed. The theoretical
results are confronted with experimental data obtained in the well-defined systems, e.g. mostly in the RIJ and SIJ cells
using monodisperse polystyrene latex colloids. A good agreement of theoretical and experimental data was found and
most of the theoretical predictions were quantitatively confirmed, in particular the significance of the hydrodynamic
scattering effect. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Adsorption and deposition (irreversible adsorp-
tion) of colloid and bioparticles at solid–liquid

interfaces is of great significance for many natural
and practical processes such as water and waste
water filtration, membrane filtration, papermak-
ing, flotation, protein and cell separation, immo-
bilisation of enzymes, biofouling of membranes
and artificial organs, etc. A quantitative analysis
of particle adsorption phenomena, viewed as the
limiting form of heterocoagulation, can also fur-* Corresponding author.
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nish interesting information on specific interac-
tions under dynamic conditions which has impli-
cations for colloid science, biophysics and
medicine, soil chemistry, etc. Furthermore, by
measuring particle deposition in model systems,
e.g. monodisperse colloid suspension, important
clues can be gained concerning mechanisms and
kinetics of molecular adsorption difficult for di-
rect experimental studies. In this way various
aspect of statistical–mechanical theories can be
tested and links between irreversible (colloid) and
reversible (molecular) systems can be established.

It should be pointed out; however, that colloid
particle adsorption is proceeding via more compli-
cated path than molecular adsorption being to a
large extent influenced by hydrodynamic and ex-
ternal force fields (e.g. gravity, magnetic electro-
static). Although, the role of hydrodynamics is
rather complex, the following two effects seem to
be decisive [1,2]; (i) transport of particles over
macroscopic distances (convection) toward inter-
faces where they become subject to specific force
fields and (ii) microscopic scale coupling between
local shearing flows and electrostatic repulsive
interactions leading to enhanced surface blocking
(referred often to as hydrodynamic scattering [3]).
These effects are conveniently studied under well-
defined conditions using the stagnation flow cells
[4–10]. Usually the number of particles adsorbed
in these cells is determined directly via optical
microscopy [3–10] whereas for particle size below
0.1 mm indirect methods are applied such as ellip-
sometry [11] or reflectometry [12–15].

On the other hand, in practice, especially in
various filtration procedures, the adsorber surface
(collector) is of a spherical (packed bed columns)
or cylindrical (fibers) shape.

Therefore, the aim of our work is to review
recent experimental data obtained using these
cells and to present ways of transferring this
information to more complicated collector geome-
try occurring in practice.

The organisation of our paper is the following:
in the first chapter we analyse the macroscopic
flow fields in the vicinity of the spherical and
cylindrical collector (both isolated and forming a
structured layer). Analogous solutions for the im-
pinging-jet cells of (i) radial symmetry (radial

impinging-jet cell RIJ) and (ii) plane symmetry
(the slot impinging-jet cell SIJ) are discussed next.
Similarities and differences between these flows
are pointed out. The method of decomposing the
macroscopic flows into simple shear and stagna-
tion flows in the vicinity of interfaces is also
exposed. Then, the microscopic flows are dis-
cussed in some detail, especially the motion of a
spherical particle parallel and perpendicular to a
solid wall. Using the local flow distributions the
governing continuity equation is formulated, in-
corporating the convective transport in the bulk
and the specific force dominated transport at the
surface. Approximate analytical models aimed at
decoupling these transfer steps are described, in
particular the powerful surface boundary layer
approximation (SFBLA). A procedure of extend-
ing this model to non-linear adsorption regimes
governed by the steric barrier due to adsorbed
particles, is presented. The role of the hydrody-
namic scattering effect in enhancing the blocking
phenomena is discussed. The theoretical results
are confronted with experimental data obtained in
the well-defined systems, e.g. mostly in the RIJ
and SIJ cells using monodisperse polystyrene latex
colloids.

2. Macroscopic flow fields

Any motion of the Newtonian fluid can be
described in terms of the Navier–Stokes equation

r
�(6
(t

+V ·9V
�

= −9p+h92V+F (1)

where V is the fluid flow velocity, r is the fluid
density, p is the pressure, h is the dynamic viscos-
ity, F is the body volume force exerted on the
fluid and t is the time. For the incompressible
liquids the Navier–Stokes equation is comple-
mented by the continuity equation

9 · V=0 (2)

To solve Eqs. (1) and (2) for the fluid velocity
V, the initial velocity field and boundary condi-
tion must be specified. The Navier–Stokes equa-
tion is a highly non-linear equation and complete
analytical solutions exists for simple geometries
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only. In most cases it is necessary to apply sophis-
ticated numerical algorithms. In many processes
the steady state is established very fast and it is
sufficient to consider the steady fluid motion.
Then, the time derivative #V/#t can be neglected.

In general the presence of the dispersed phase
changes the properties of the liquid. If the concen-
tration of the dispersed colloidal particles is high
the fluid usually exhibits viscoelastic behaviour
[16]. For the moderate concentrated suspension it
is sufficient to adjust the viscosity of the fluid for
the presence of colloidal particles [17]. If the
volume fraction of the particles is less than 5%,
which corresponds to a particle concentration of
the order of 1012 cm−3 in the case of typical
colloids, the influence of particles on the flow
around the macroscopic interfaces can be
neglected.

The review of the macroscopic flow fields being
the solution of the Navier–Stokes equation for
the collectors of various geometries relevant for
the practical applications of adsorption of col-

loidal particles was presented in the monographs
by van de Ven [17], Elimelech et al. [18] and in the
review articles by Adamczyk et al. [1–3].

Among numerous collector geometries we dis-
cuss here in some details the spherical and cylin-
drical collector, both isolated and forming a
structured layer, and impinging-jet cells of radial
and planar symmetry (see Fig. 1).

2.1. Sphere in uniform flow

In the case of a sphere immersed in the uniform
flow one may conveniently solve the Navier–
Stokes equation in the spherical coordinates (r, q)
by introducing the stream function C. The com-
ponents of the fluid flow velocity are then given
by [19]

Vr = −
1

r2 sin q

(C
(q

Vq =
1

r sin q

(C
(r

(3)

Fig. 1. A schematic view of the laminar flow pattern in the vicinity of sphere in uniform flow, cylinder in uniform flow radial
impinging-jet (RIJ) cell and the slot impinging-jet cell (SIJ). V� is the velocity of the uniform flow and Q is the volume flow.
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For low Reynolds number, Re=2V�R/n�1
(where V� is the uniform flow velocity cf. Fig. 1,
R is the sphere radius and n=h/r is the fluid
kinematic viscosity) the stream function around a
sphere can be expressed as:

C=
1
2

V�R2 sin2 q
� 1

2r̄
−

3
2
r̄+ r̄2n (4)

where r̄=r/R.
Using Eq. (3) one can derive the following

expressions for the velocity components

Vr= −
1
2

V�
�

2−
3
r̄
+

1
r̄3

n
cos q

Vq= −
1
4

V�
�3

r̄
+

1
r̄3−4

n
sin q (5)

For small distances from the interface, when h( =
(r−R)/R�1, Eq. (5) simplifies to

Vr= −
3
2

V�h( 2 cos q

V=
3
2

V�h( sin q (6)

It was shown in [1,17] that for Re�300 one can
still use Eq. (6) written in the form

Vr= −
3
2

AfV�h( 2 cos q

Vq=
3
2

AfV�h( sin q (7)

where the dimensionless flow parameter Af in-
creases with the Reynolds number according to
the expression [20]

Af=
3
2
�

1+
0.19Re

1+0.25Re0.56

n
If we consider the porous medium composed of

identical spheres of radius R, the flow field around
a single sphere is influenced by presence of other
spheres. Various models that describe the flow
field in the packed bed consisting of spheres are
available. The ‘sphere in cell’ models [21–23] con-
sider that each sphere in the porous plug is sur-
rounded by the spherical cavity filled with fluid.
The size of cavity is determined by the overall
average porosity of the medium. The general solu-

tion of the Navier–Stokes equation for the stream
function inside the cavity may be written as [18]:

C=
1
2

V�R2 sin2 �K1

R
r
+K2

r
R

+K3
� r

R
�2

+K4
� r

R
�4n

(8)

where the coefficients K1–4 are to be determined
from the boundary conditions at the surfaces of
the cavity. On the inner surface of the cavity, i.e.
at the sphere surface, the usual no-slip boundary
conditions are used. The boundary conditions at
the outer surface of the cavity depend on the
model of the porous medium. Knowing the ex-
pression for the stream function the velocity com-
ponent can be calculated applying Eq. (3). Using
Happel’s no stress boundary conditions at the
outer surface of the cavity [22,24] and introducing
the dimensionless h( coordinate one can express
the fluid velocity components close to the surface
of the sphere in the form analogous to Eq. (7)
with the flow parameter given by

Af=
2 (1−P5)

w
(9)

where P=R/b= (1−op)1/3 and w=2−3P+
3P5−2P6, b being the radius of the cavity and oP

is the average porosity of the medium. A similar
expression can be obtained using the model of
Kubawara [23] by assuming no vorticity
boundary condition at the outer surface of the
cavity.

The second class of models of the fluid flow
through the packed bed of identical spheres is
based on the swarm theory [25,26] to include the
effects of the flow in the porous medium sur-
rounding the cavity which is usually considered in
terms of either Darcy’s or Brinkman’s law. The
flows inside and outside the cavity must satisfy
the continuity boundary conditions at its outer
surface. The models based on the swarm theory
describe better the fluid flow in the media of lower
porosity than the sphere-in-cell models.

2.2. Cylinder in uniform flow

The Navier–Stokes equation for the motion of
fluid around the isolated stationary cylinder can
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Fig. 2. The dependence of the flow parameter ar on the
Reynolds number calculated for various RIJ cell geometry.
Spline curves, 1 for hc/rc=1, 2 for hc/rc=2 and 3 for hc/rc=3
are fitted to the points obtained from the numerical solution of
the Navier–Stokes equation.

Af =
a−1

ln a+
3
2
−2a+

1
2

a2

(11a)

where a=1−op

The application of the swarm theory leads to
more complicated formulas which can be found in
[26].

2.3. Impinging-jet cells

The impinging-jet cells, shown in Fig. 1, ap-
peared to be particularly useful for theoretical and
experimental studies of colloidal particles adsorp-
tion. The first experimental cell having radial sym-
metry (RIJ) was constructed by Dąbroś and van
de Ven [4,5]. Since then it has found numerous
applications in the research on the adsorption of
colloidal systems [3–15,28–32]. The fluid distribu-
tion in the cell can only be found in the general
case by numerical solution of the governing
Navier–Stokes equation [4]. However, for a small
distance from the interface the fluid velocity com-
ponents can be approximated by the expression
[4]

Vr=ar(Re, hc/rc)V�h( Sr(r) (12)

Vz= −ar(Re, hc/rc)V�h( 2Cr(r)

where hc is the distance between the tip of the
capillary and the interface, r is the radial distance
from the symmetry axis, h( =z/rc is the dimension-
less distance from the adsorbing interface, ar is a
flow parameter depending on the cell geometry
and the flow intensity expressed by the Reynolds
number Re=Q/prcn, where Q is the volume flow,
rc is the capillary radius and V�=Q/prc

2 is the
mean linear velocity. The dependence of ar on Re
for various hc/rc ratios is shown in Fig. 2. The
functions Cr(r) and Sr(r) describing the radial
distribution of the flow depend only on the radial
coordinate. For r/rcB0.25, Cr:1 and Sr:rc.

Recently Adamczyk et al. [8,10] developed the
new experimental cell shown schematically in Fig.
1 in which the suspension jet has plane-parallel
geometry. The area accessible for the observation
in this type of cell, usually called the ‘slot-imping-
ing jet’ (SIJ), exceeds by order of magnitude that
for the impinging-jet cells with cylindrical geome-

be conveniently formulated in the cylindrical po-
lar coordinates (r, q). However, an exact solution
for the low Re is not possible due to a divergence
problem (Stokes’ paradox). At small distances
from the cylinder surface the components of the
fluid flow velocity can be approximated by [27]:

Vr= −2AfV�h( 2 cos q (10)

Vq=4AfV�h( sin q

where R is the cylinder radius and

Af=2(b−0.48b3), b= (2.022− ln Re)−1 for Re

51 [26]

Af=0.44Re0.56 for 1BReB200 [26]

It was also shown that for the porous plug
formed by the network of identical cylinders one
can derive a similar expression for the velocity
components near the cylinder surface. For exam-
ple for Happel model Af is given by [22,27]

Af =
�

1+
�a2+1

a2−1
�

ln a
n−1

(11)

and for Kubawara model by [23,27]
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try. The fluid streamlines in the slot-impinging-jet
cell obtained from the numerical solution of the
Navier–Stokes equation are illustrated in Fig. 3.
As it can be observed they exhibit a pattern
typical for hyperbolic (stagnation) flows. A char-
acteristic feature of the flow is that only a very
small part of suspension jet entering the cell al-
most at the symmetry line has a chance to ap-
proach the interface close enough for particle
adsorption to take place. For higher Reynolds
number of the flow (Re=V�d/n) a vortex is
formed in the region adjacent to the inlet channel
wall. A similar flow pattern is observed in the
impinging-jet cell with cylindrical symmetry [4].

The flow field in the cell, near the interface can
be described by [10]

Vx=2as(Re, hc/d)V�h( Ss(x) (13)

Vz= −as(Re, hc/d)V�h( 2Cs(x)

where x is the distance from the symmetry plane,
as is the flow parameter which, is a function of the
cell geometry and the Reynolds number of the
flow, V�=Q/2dl where l is the depth of the
channel assumed much larger than its width 2d.
The dependence of the flow parameter as on the
Reynolds number and the ratio of the distance
between the channel outlet and the adsorption
surface to the channel half width (hc/d) is shown
in Fig. 4. The functions Ss(x) and Cs(x) describe
the lateral distribution of the flow. Their depen-
dence on the distance x from the symmetry line is
shown in Fig. 5. It can be seen that for x/dB0.5,
Ss(x):x/d while for x/dB0.3, Cs(x):1. It also
can be noticed that the lateral dependence of the
fluid flow velocity components in the slot-imping-
ing-jet is very similar to the velocity components
at the isolated cylinder (cf. Eq. (10)) if one defines
q=px/2d.

2.4. Decomposition of macroscopic flows

The above discussed fluid flow field in the vicin-
ity of a macroscopic surface can be decomposed
by using the local Cartesian coordinates (xl, yl, zl)
into the stagnation point flow Vst and a simple
shear flow Vsh defined as:

Vst=Gst(2xlzlix−z2
l iz)

Fig. 3. Fluid streamlines in the SIJ cell (hc/d=2.6) determined
from numerical solutions for A: Re=2, B: Re=8 and C:
Re=16. Due to symmetry, only the right-hand side of the cell
is shown.
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Fig. 4. The dependence of the flow parameter as for SIJ cell on
the Reynolds number calculated for various cell geometry.
Spline curves 1 for hc/d=1, 2 for hc/d=2 and 3 for hc/d=3
are fitted to the points obtained from the numerical solution of
the Navier–Stokes equation.

ered as the long range hydrodynamic interaction.
The problem of determining the fluid flow in a
colloidal suspension is greatly simplified by the
fact that the size of particles is of the order of
micrometer or less. The resulting Reynolds num-
ber for this microscopic flow, Re=aUp/n, where
Up is the typical velocity of particle motion be-
comes therefore very small, seldom exceeding
10−2. Therefore, the Navier–Stokes equation can

Fig. 5. (a) Dependence of as Cs (X) at h( �0 on the tangential
coordinate X determined numerically for (1) Re=16, (2)
Re=8 (3) Re=2 (solid lines). The broken lines show the
analytical solutions for a cylinder in a uniform flow, i.e. as

Cs(X)=Af cos (pX/2), where Af=0.44Re0.56. (b) Dependence
of the as Ss(X) on X for (1) Re=16, (2) Re=8 and (3) Re=2.
The broken lines show the analytical solution for a cylinder in
a uniform flow.

Vsh=Gshzix (14)

where Gst and Gsh are the stagnation point and
simple shear flow strengths, respectively, ix and iz
are the unit vectors in local Cartesian coordinates.

The fluid velocity components, the stagnation
point and simple shear flow strength for all types
of flows discussed in this review are collected in
Table 1. Also values of the Peclet number, being a
measure of the relative magnitude of convection
and diffusion in the transport of suspension of
colloidal particles to the surface, are presented.
For a given type of flow the Peclet number is
defined as: Pe=Vcha/D� where Vch is the charac-
teristic fluid flow velocity close to the adsorption
surface, a is the particle radius and D� is particle
diffusion coefficient in the unbound fluid.

3. Microscopic flow fields

A particle moving in the suspension produces a
flow in the surrounding medium and surrounding
walls. This flow exerts the viscous drag on the
particle and its neighbours which can be consid-
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Table 1
Undisturbed flow fields near collectors

Gst Gsh PeCollector Velocity components

Sphere in uniform flow
Vr=−

3

2
AfV�h( 2 cos q 3V�Af cos q

2R2

3AfV�a

R2D�

3V�Af sin q

2R
Vq=−

3

2
AfV�h( sin q

Vr=−2AfV�h( 2 cos qCylinder in uniform flow 2V�Af cos q

R2

4AfV�a3

R2D�

4V�Af sin q

R
Vq=4AfV�h( sin q

Radial impinging jet ‘RIJ’ (r/rcB0.25)
Vr=ar

V�
rc

h( r
ar

V�
rc

2
rar

V�
rc

2 r

2arV�a3

R2D�Vz=−arV�h( 2

Slot impinging jet ‘SIJ’ (x/dB030)
Vx=2as

V�
d

h( x 2asV�a3

d2D�
2as

V�
d2

xas

V�
d2

Vz=−asV�h( 2

be linearized and the resulting creeping flow
(Stokes) equation for the uncharged particles has
a form:

h92V=9p (15)

The Stokes equation and the continuity equation,
together with the appropriate boundary condi-
tions on the particle surfaces and macroscopic
interfaces form a complete boundary value prob-
lem. On the surface of the rigid particle or inter-
face the no-slip boundary conditions are usually
assumed while at a liquid/liquid interface the con-
dition of equal stress at both sides of the interface
is used.

Because of its relevance to practical applica-
tions, the hydrodynamic problem of the un-
charged spherical particle moving close to the
solid surface has been a subject of numerous
works. Maude [33] and Bart [34] considered the
problem of a sphere approaching a rigid plane
interface, O’Neill solved the problem of a spheri-
cal particle sliding (moving without rotation)
along the rigid plane [35,36] and attached at the
surface in the simple shear flow [37], Dean and
O’Neill gave the solution for the problem of the
particle rotating at the rigid wall [38], while Goren
and O’Neill solved the general hydrodynamic
problem of the particle moving at the rigid wall in

a flow which velocity is of the second degree in
the local coordinates [39]. The stagnation point
flow, and the simple shear flow are the special
cases of this general flow field. In all these papers
the bispherical polar coordinates were applied and
the fluid velocity fields were obtained analytically
in terms of orthogonal functions expansions.
These expansions are, however, slow converging if
the distance between a particle and a rigid wall
approaches zero. Therefore, Goldman, Cox and
Brenner studied the problem of the spherical par-
ticle moving at the rigid wall in the lubrication
approximation valid for the distances less then
20% of particle radius [40–42].

3.1. Sphere in the 6icinity of planar wall in
quiescent fluid

It was shown in [33,34] that the velocity of
spherical particle moving in a quiescent fluid per-
pendicularly to the rigid wall is given by

UÞ=F1(H)
� FÞ

6ph a
�

=
1

l Þ(H)
�FÞ

Rst

�
(16)

where F1(H) and lÞ(H) are the correction func-
tion for the mobility and the Stokes resistance
coefficient respectively, H is the width of the
particle–wall gap normalized by particle radius,
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Rst=6pha is the Stokes resistant coefficient and
FÞ is the component of the force causing particle
motion directed perpendicularly to the wall and
equal to the viscous drag force. The correction
functions can be calculated analytically from the
series [33,34]:

lÞ(H) =
1

F1(H)

=
4
3

sinh(a) %
�

n=1

n(n+1)
(2n−1)(2n+3)

�Yn

Tn

− 1
n

(17)

where a=cosh−1(H) and

Yn=2 sinh(2n+1)a+ (2n+1) sinh 2a

Tn=4 sinh2(n+1/2)a− (2n+1)2 sinh2 a

Since the exact form of Eq. (17) involving the sum
of the infinite series is hard to implement, it is
often useful to find effective interpolation func-
tion. Accordingly, it was found in [43] that the
expression

F1(H) =
19H2+4H

19H2+26H+4
(18)

provides a good approximation to the exact for-
mula for the entire range of the gap width. The
correction function F1(H) calculated using exact
formula (Eq. (17)) and its approximation accord-
ing to Eq. (18) are compared in Fig. 6.

The velocity of a spherical particle moving in
the stagnant fluid parallel to the rigid wall can be
obtained from:

Ull=F4(H)
� Fll

6pha
�

=
1

lll(H)
�Fll

Rst

�
(19)

where F4(H) and lII(H) are the correction func-
tion for the mobility and the Stokes resistance
coefficient respectively and FII is the component
of the force causing particle motion directed per-
pendicularly to the wall. The correction function
F4(H) calculated by Goren and O’Neill [39] from
the solution of the creeping flow equation in the
bispherical polar coordinates is illustrated in Fig.
6 together with the interpolating function [43]:

F4(H) =
1

1.062−0.516 ln(H)
; valid for HB0.11

Fig. 6. The hydrodynamic correction functions for the spherical particle in the vicinity of the solid wall. Part A: the correction for
a mobility of a freely moving particle perpendicular, F1(H), and parallel, F4(H), to the wall. Part B: the correction for the particle
velocity moving towards the wall in the stagnation point flow F1(H)F2(H) and along the wall in the simple shear flow F3(H). Solid
lines show the results of exact solution of the creeping flow equation in the bispherical coordinates, dashed curves; the respective
interpolation formulae (see text).
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F4(H) =
� H

2.639+H
�1/4

; valid for H]0.11

(20)

The theoretical expressions describing the mo-
bility of the particle close to a solid wall were
verified experimentally by Adamczyk et al. [44]
and Mal*ysa and van de Ven [45] using multiple
frame photography technique.

The universal correction functions F1–F4 dis-
cussed in this section are used for constructing the
mobility matrix needed for the bulk transport
equation as discussed later on.

3.2. Sphere at a planar wall in presence of
external flow

Since colloidal particle adsorption usually oc-
curs in the presence of macroscopic flow it is
important to describe also the influence of the
hydrodynamic interactions on trajectory of parti-
cle moving in the external flow. When a particle is
subjected to a flow in an unbounded fluid it
follows the streamlines and the particle velocity is
equal to the local fluid velocity. Due to the pres-
ence of the rigid interface the particle lags the
fluid flow, i.e. the particle velocity differs from the
local fluid velocity at the same point. As it was
mentioned before, the fluid flow can be decom-
posed in the local Cartesian coordinates into the
stagnation flow and simple shear flow, therefore,
it is enough to discuss motion of particles in these
flow fields.

In the stagnation flow if VÞ is the component
of the fluid velocity perpendicular to the rigid
wall, then the corresponding component of the
particle velocity UÞ can be expressed as:

UÞ=F1(H)F2(H)VÞ (21)

The correction function F2(H) was obtained from
the analytical solution of the creeping flow equa-
tion by Goren and O’Neill [39]. The dependence
of the product F1(H)F2(H) on the particle–wall
separation is shown in Fig. 6. The F2(H) function
can be well approximated by [43]:

F2(H) = 1 +
1.79

(0.828+H)1.167 (22)

It can be seen that the interactions with the wall
starts to influence the particle motion at distances
HB2 and for example at H#0.25 the particle
velocity is 2 times lower than the local fluid
velocity.

In the case of a particle moving in the simple
shear flow particle velocity is a function of the
shear rate Gsh and the distance to the wall H, i.e.

Ull=F3(H)Gsha(1+H) (23)

where the dependence of the correction function
F3(H) on the particle–wall separation determined
by Goren and O’Neill [39] is illustrated in Fig. 6.
It can be well approximated by the interpolation
function [43]:

F3(H) =
1

0.754−0.256 ln(H)
; valid for H

B 0.137

F3(H) = 1−
0.304

(1+H)3; valid for H ] 0.137

(24)

The relationship between particle distance from
the wall and its velocity in the simple shear flow
(Eq. (23)) can be used for the experimental deter-
mination of the position of the particle relatively
to the interface. Having measured particle velocity
in the simple shear flow of the controlled intensity
with the optical microscope, one can invert Eq.
(23) and obtain particle–wall separation. Several
authors have used this technique to study motion
of colloidal particles at interfaces under the influ-
ence of the electric, electrokinetic, van der Waals,
gravitational and steric forces [46–49].

3.3. Sphere/sphere attached at an interface

At the initial stage of the deposition process,
when the surface coverage is low, the adsorption
rate is determined by a particle–interface interac-
tions only. When the coverage of the interface
increases one has to take into account also the
interactions of moving particles with the attached
ones as well as the influence of the deposited
particles on the flow field in the vicinity of the
interface. On the other hand, the flowing particles
can exert the influence on the adsorbed ones
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Fig. 7. The family of trajectories of a particle moving in the stagnation line flow around a particle attached to the wall obtained from
the solution of creeping flow equation. The initial distance from the wall Zi=zi/a ranged from 2.6 (the upper trajectory) to 1.4 (the
lowest trajectory). The immobile particle centre was located at the distance xd/a=20 from the stagnation line.

leading to their desorption. Therefore, the proper
description of the hydrodynamic interaction of
moving colloidal particle with ones already de-
posited at the interface is of importance for the
quantitative analysis of the adsorption process.

Due to the complicated geometry the solution
of the creeping flow equation for the problem of
many particles at interface is prohibitively com-
plex and has been obtained only for the case of
two particles by applying elaborate numerical
techniques. In general the solution of the creeping
flow (Stokes) equation can be expressed in the
integral form [50]:

V(x)=V0(x)+ %
2

l=1

Sl G(x, y)·f(yl) dSl (25)

where V0(x) denotes the fluid flow field at a given
point in the absence of the particles fulfilling the
no-slip boundary condition (V0=0) at the inter-
face, y is a vector pointing at the surface element
dSl, G(x, y) is the Oseen tensor accounting for the
presence of the rigid wall [50], f(yl) is the force
density at a point yl at the l (l=1, 2) particle
surface and Sl is the surface of particle l.

The total force Fl and torque Tl exerted by
particle l on the fluid are given by the equations:

Fl=
&

Sl

f(yl) dSl (26)

and

Tl=
&

Sl

(y−Rl)× f(yl) dSl (27)

where Rl specifies the position of the center of
particle l.

In order to obtain a complete system of equa-
tions, one has to take into account the boundary
conditions at the particle surface:

V(yl)=Ul+Vl× (yl−Rl) (28)

where Ul and Vl are the translational and rota-
tional velocities of the particle l, respectively. For
the particle attached at the interface both veloc-
ities are equal to zero.

Eqs. (25)–(28) form a complete system, pro-
vided that the external force and torque or the
velocities of the particles as well as the external
flow field V0(x) are specified.

Dąbroś and van de Ven [51–53] developed two
convenient methods of the numerical solution of
the system of equations (Eqs. (25)–(28)) for the
problem of two spherical particles at a rigid inter-
face. In the first, the boundary element method
(BEM), the surface of each particle is divided into
a finite number of triangular elements. The sur-
face integrals can be replaced by the sums of the
integrals over the elements [52]. In the second
method the particle surfaces are divided into a set
of subunits and the surface integration in Eqs.
(25), (26) and (28) can be replaced by summation
over these subunits. A more detailed discussion of
the subunit method with the application to the
problem of the collision of two colloidal particles
at the rigid interface can be found in [51,53].

The example of the hydrodynamic interactions
between two spherical particles at the interface is
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demonstrated in Fig. 7. This figure presents the
trajectories of a spherical particles moving in the
stagnation point flow and colliding with one
firmly attached to the rigid planar interface at the
distance of 20 particle radii from the stagnation
point. The hydrodynamic interactions are taken
into account using the multisubunit method while
the hard core interaction between moving and
stationary particle were considered in terms of
Born-like interaction, proportional to h−9 where
h is the particle–particle distance. It can be seen
that during its motion along the interface the
moving particle is repelled by the sitting one due
to the hydrodynamic interactions. When the ini-
tial particle–wall gap width is greater then the
particle diameter (Zi\2) the moving particle after
the collision returns to the trajectory which would
occur if the attached particle were not present.
When the mobile particle is initially closer to the
wall its trajectory, after the collision, significantly
deviates from one in the absence of attached
particle and is significantly pushed out of the
interface.

In Fig. 8 the family of particle trajectories is
presented, calculated for the simple shear flow
with the initial distance from the interface is Zi=
zi/a=1.6 and the lateral coordinate Yi=yi/a of
the starting position ranges from −2 to 2 and
Xi=xi/a= −8. It can be seen that the semicircu-
lar scattering pattern is formed by the final posi-
tions (Yf=8) of moving particles. The radius of
this pattern is strongly dependent on the particle–
particle interaction [43,53]. Thus, similarly as col-
lisions of elementary particles, collisions of
colloidal particles can provide the information
about the interactions between them. That idea
was the basis of ‘colloidal particle collider’ a novel
experimental technique of determining colloidal
interactions [47,49].

The suitability of the creeping flow theory to
the surface collisions of two uncharged spherical
particles was directly confirmed by experiment by
Mal*ysa et al. who observed collisions of macro-
scopic spheres in silicon oil and measured their
trajectories using multiple frame photography
technique [54].

4. The convective diffusion theory

4.1. The continuity equation

Our considerations presented hereafter are, in
principle, valid for spherical particles only because
of insurmountable mathematical difficulties, no
exact solutions of the continuity equation for
anisotropic particle have been derived yet. How-
ever, the results obtained for spheres may be
exploited as a useful reference system for colloid
particles of other shapes.

Assuming that the colloid particle suspension
can be treated as a stable, well-defined phase and
assuming that there is no coupling between hydro-
dynamic and other interactions one can write the
expression for the mass flux vector j in the usual
form

j= −D · (9m/kT+9f/kT)n+Upn (29)

where D=kT M the diffusion matrix, M is the
mobility matrix characterising all contributions
stemming from the walls (described by the func-

Fig. 8. The collision pattern formed by the trajectories of
particles moving in the simple shear flow at the rigid wall and
colliding with the particle firmly attached to it. The starting
distance to the wall Zi=1.6 and the lateral position ranges
from Yi= −2 to Yi=2.
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tions F1–F4 as discussed previously), m is the
chemical potential of particles, f the external
force potential, n is the local value of particle
concentration, Up=M · Fh+Mr · Th is the particle
velocity vector due to the hydrodynamic force Fh

and torque Th, and Mr is the rotational mobility
matrix. It should be mentioned that the potential
f contains the contribution stemming from exter-
nal sources, e.g. gravity, magnetic fields, electro-
static interactions due to the interface, etc.,
whereas the specific interactions between particles
are contained in the chemical part of the potential
m. All these interactions have been extensively
discussed in the recent review [55].

By formulating Eq. (29) all the hydrodynamic
particle/particle interactions were neglected as
well as all flow disturbances due to the presence of
particles.

For dilute systems, as it is usually the case in
the bulk of the suspension during deposition ex-
periments, the chemical potential simply becomes
m=m0+kT ln n (where m0 is some reference value
of the potential). This case would correspond to
the ideal bulk behaviour of the suspension. In the
general case; however, e.g. in the regions where
local particle concentration increases, the devia-
tions from ideality may become significant.

For a suspension exhibiting an ideal bulk be-
haviour by neglecting specific and external forces,
and assuming that particle velocity coincides with
the fluid velocity (as is the case far from boundary
surfaces) one can simplify Eq. (29) to the form [3]

j= −D�9n+Vn (30)

where D� is the diffusion coefficient in the bulk
(position independent scalar quantity) and V is
the unperturbed fluid velocity vector fulfilling the
continuity equation 9 · V=0.

Eq. (2), being the starting point of the convec-
tive diffusion theory [3] is usually referred to as
the Smoluchowski–Levich (SL) approximation.

Let us now consider transport of colloid parti-
cles in the vicinity of an interface. Assume that
after approaching the interface close enough, the
particles become immobilized due to the presence
of specific tangential interactions whose range is
infinitesimal in comparison with particle dimen-
sion. Thus, upon contact, the particles do not

move along the surface although they can occa-
sionally escape from the primary minimum re-
gion. Using the flux expression, Eq. (29) one can
formulate the nonstationary continuity equation
for the mobile phase as

(n
(t

= −9·j =9·[(D ·9m/kT+D ·9f/kT-Up)n ]

(31)

where t is the time.
The mass conservation equation for the immo-

bile phase can be formulated by observing that
the increase in the surface concentration of the
immobilized particles N is due to the normal
component of particle flux at the interface j

dN
dt

= j(dm)·n̂=kan(dm)−kdN (32)

where dm is the primary minimum distance [1], n̂
is the unit normal pointing outwards from the
interface and j(dm) is the local flux vector given by
the expression

j(dm)= (D · 9m/kT+D · 9f/kT−Up)n �d m
(33)

where ka is the adsorption rate constant character-
izing the transfer rate from mobile to immobilized
phase and kd is the desorption rate constant de-
scribing particle escape rate from the immobilized
phase.

Using Eqs. (32) and (33) one can formulate the
general kinetic boundary condition for the bulk
phase in the form

kan(dm)−kdN

= [(D ·9m/kT+D ·9f/kT−Up)n ]·n̂ ; at dm (34)

Eq. (34) indicates that the bulk and surface
continuity equations are coupled and cannot be
solved independently in the general case. How-
ever, when one assumes the perfect sink be-
haviour, i.e. when the transfer rate from mobile
into immobile phase ka becomes infinite (due to
the presence of infinite energy sink) and kd=0,
then the boundary condition for the bulk phase
assume the particularly simple form

n=0 at dm (35)
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This type of boundary condition has been used in
the Smoluchowski–Levich theory in conjuncture
with the bulk transport equation derived by ex-
ploiting the flux expression, Eq. (30), i.e.

(n
(t

=D�92n−V ·9n (36)

Later on, the PS boundary conditions, Eq. (35)
have extensively been exploited in numerical calcu-
lations of particle deposition rate at various sur-
faces [1–6,17,18,56].

The boundary value problem expressed by the
mass conservation equations, Eqs. (31) and (32)
and the boundary condition, Eq. (34) is comple-
mented by bulk boundary condition which assume
usually the form

n�nb at large distances from the interface (37)

On the other hand, for adsorption from a finite
volume the symmetry boundary conditions are
appropriate

9n=0 at the symmetry plane (38)

It should be remembered that due to presence of
adsorbed particles, the chemical potential entering
Eq. (31) is modified in the vicinity of the interface.
One can postulate that the modified potential can
be expressed as

m=m0+kT ln( fn)=m0+kT ln n+kT ln f (39)

where f is the activity coefficient which is depen-
dent not only on the distribution and surface
concentration of deposited particles but also on
particle/particle interactions. Note also that f is a
spatial variable having the property

f=1 at distance \2a+d* (40)

where d* is the range of particle/particle
interactions.

Since the coefficient f as defined by Eq. (39) is
depending on particle configuration which in turn

is determined by particle transport mechanism in
the bulk (flow, diffusion, external force), both the
bulk and surface continuity equations become
coupled in a complicated, nonlinear way which
prohibits any general solution of the boundary
value problem expressed by Eqs. (31)–(35). There-
fore, simplified models are usually considered like
the above mentioned SL approximation Eqs. (35)
and (36) or the linear model assuming an ideal
behaviour in the bulk and neglecting the influence
of deposited particles, when f=1. In the latter
case the nonstationary bulk transport equation
becomes
(n
(t

=9·[D ·9n+ (D ·9f/kT-Up) n ] (41)

with the PS boundary conditions
A particularly attractive situation arises when

the normal component of the flow and the external
force are independent of coordinates tangential to
the interface as is the case for the above collectors
in the region close to stagnation point (or stagna-
tion line). Then Eq. (31) can be converted into the
simple one-dimensional form [57,58]

( n
( t

=
(

( h
!

D(h)
�( n
( h

+ (9f/kT)n
n"

+Q(h) (42)

where h is the separation between particle and the
interface, D(h)=F1(H)D�, F1 is the previously
discussed hydrodynamic correction function,
D�=kT/6pha is the diffusion coefficient in the
bulk and Q(h)=9·Upn+Up·9n.

Using the correction functions discussed above
Eq. (42) can be formulated in the dimensionless
form suitable for numerical calculations:

where n̄=n/nb; t= t(D�/a2).
The advantage of Eq. (42a) (being from a math-

ematical viewpoint a parabolic partial differential
equation) is that it can exactly be solved by
standard numerical techniques, e.g. by the finite-
difference Crank–Nicholson scheme [57,58] under
transient (nonstationary) conditions.

(n
(t

=
(

(H
F1(H)

� (n
(H

+
(f

(H
n
n

+
1
2

Pe n
� (
(H

F1(H) F2(H)(H+1)2−2F3(H)(H+1)
n

+
1
2

F1(H) F2(H)(H+1)2Pe
(n
(H

(42a)
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Eq. (42a) can further be simplified when assum-
ing that the steady-state conditions are established
which is a valid assumption for a broad class of
practically important situations when the duration
of the transient regimes is of the order of seconds
[59].

A number of limiting solutions to Eq. (42)a have
been derived in the literature for barrier-less and
barrier-controlled transport conditions as dis-
cussed below.

4.2. Limiting solutions for the perfect sink model

The solutions of quite general validity can be
derived analytically for the Smoluchowski–Levich
approximation. Physically, this model works best
for suspensions of small colloid particles and not
too vigorous flows. Then, the diffusion boundary-
layer thickness remains much larger than particle
dimension so the effect of specific and external
force fields become negligible as well as the diffu-
sion coefficient changes due to the presence of in-
terfaces. The limiting solutions derived from the
SL model are discussed extensively in [1–
3,17,18,55]. For the collectors discussed in our
work the stationary flux j0 at the uniformly accessi-
ble region is given by

j0=C1

D�2/3 V�1/3

R2/3 nb (43)

where C1 (proportionality constant) =0.89 Af for
the sphere, 0.98 Af for the cylinder and 0.78a1/3

s for
the impinging-jet cells (where as(Re) are the dimen-
sionless functions presented in Figs. 2 and 4), V� is
the characteristic velocity equal the uniform ap-
proach velocity for sphere and cylinder and Q/S for
the impinging-jet cells (in the latter case R in Eq.
(43) should be replaced by the capillary radius rc or
the half-width d).

Note, that this stationary value of the flux (often
referred to as the limiting or initial flux) is propor-
tional to D2/3

� rather than D� as is the case for no
flow conditions [3]. It is also interesting to observe
that j0 is rather insensitive to the fluid velocity V�.

For the region far from the stagnation point or
line the stationary flux becomes position dependent
and is given by the analytical formulae discussed in
[3]

j0= fs(q)
D�2/3V�1/3

R2/3 Af 1/3 nb (44)

where fs(q)=0.78 sin q/(q−1
2 2 sin q)1/3 for sphere

and

fc(q)=0.85

sin q�& q

0


sin j dj
�1/3

for cylinder and q is the angular coordinate mea-
sured from the flow symmetry line or plane (for
cylinder).

An analogous dependence of j0 on the tangential
coordinate is expected for the SIJ cell because the
flow pattern is very similar as shown in Fig. 5.

It can also be deduced from Eq. (44) and the
graph shown elsewhere [3] that the flux does not
change appreciably for angles smaller than 90°, i.e.
in the front part of the collector.

Except for predicting particle deposition rate for
the initial conditions (low coverage regime), Eqs.
(43) and (44) have a significance for testing the ac-
curacy of numerical solutions of the exact continu-
ity equation, Eq. (42a). These solutions, discussed
extensively in previous reviews [1–3,55], demon-
strated that the above limiting solutions can be use-
ful for predicting deposition rate of particles
smaller than 0.5 mm of diameter. For larger particle
sizes, significant deviations from the Smolu-
chowski–Levich theory occurs as a result of the in-
terception effect.

It was shown in [29] by performing exact numer-
ical solutions of Eq. (42a) that the initial flux (in
the uniformly accessible region) can well be ap-
proximated by the formula

j0=
D�
a

1
2

Pe ā�2 nb (45)

where ā*2 is the effective particle radius which is
given by [29]

ā*=1+
1

ka
j−

2
ka

ln
�

1+
1

ka
j
�

(46)

where j= ln
2oa �c1

0c2
0�

kT Pe
, ka

k−1=
� okT

8pe2I
�1/2

is the Debye screening length,
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o is the dielectric constant e is the elementary
charge, I the ionic strength of the electrolyte.
Detailed expressions for the flux can be calculated
using the Pe definitions given in Table 1.

4.3. The surface force boundary layer
approximation (SFBLA)

Other analytical results of general validity can
be derived in the case when an energy barrier
appears due to presence of electrostatic repulsion
between particles and a collector. Since these in-
teractions are usually short-ranged in comparison
with the diffusion boundary layer thickness one
can use the approximate method developed origi-
nally in [60–63]. The method, referred to as the
surface boundary layer approximation is based on
the assumption that the particle transport through
the thin surface force layer can be treated as a
process independent of bulk transport. As a re-
sult, fluid convection is neglected within the sur-
face layer of thickness d, whereas the specific
interactions are assumed negligible outside d. We
shall formulate the SFBLA in a more general
form, suitable for treating the problem of the
steric barrier arising due to deposited particles.

The starting point of the approach would be
Eq. (29) formulated, by neglecting fluid convec-
tion in the one-dimensional form

j(h, t)= −D(h)
�d ln n

dh
+

dF/kT
dh

n
= −D(h) e−F/kT d

dh
eF/kT+ ln n (47)

where the function F=f+kT ln f can be treated
as the generalized potential, f is the activity
coefficient.

Considering that the relaxation time of estab-
lishing the quasi stationary transport conditions
through this layer t=d2/D(h)�d2/D� is very
short, one can treat j as a quasi-stationary vari-
able, independent of time and the distance h.
Then, Eq. (47) can easily be integrated within the
domain dmBhBd which gives the general expres-
sion (positive flux convention used) [64]

jb=
n(d) eF(d)/kT−n(dm) eF(dm )/kT

Rb

(48)

where n(dm), n(d) is the particle concentration at
the primary minimum region and at the edge of d,
respectively and

Rb=
& d

dm

eF/kT

D(h)
d(h)

=
& d

dm

eF/kT−1
D(h)

dh +
& d

dm

dh
D(h)

= Rexc+R0

(49)

can be treated as the static resistance due to the
presence of the barrier. Rexc is defined as the
excess resistance.

For the perfect sink model (when the interac-
tion potential tends to minus infinity at h=d Eq.
(48) reduces to

jb=
n(d)
Rb

=
n(d)

Rexc+R0

=ka
’ n(d) (50)

where k %a=1/Rb is the rate constant of particle
deposition.

Eq. (50) can be treated as the generalized
boundary condition for the bulk transport, in
particular for those arising from the SL
approximation.

Knowing jb one can derive general expression
for the overall flux due to barrier and bulk trans-
port. In general, for the nonuniformly accessible
surfaces this requires the bulk transport equation
to be solved with the boundary conditions ex-
pressed by Eq. (50). Such solutions were derived
in the case of the spherical and cylindrical collec-
tors by Spielman and Friedlander [61] and for the
parallel plate and cylindrical channel by Bowen et
al. [62]. Unfortunately, explicit evaluation of the
overall deposition rate as a function of parameters
characterizing surface interactions can only be
carried out numerically.

However, useful analytical expressions for the
overall flux can be derived in the case of uni-
formly accessible surfaces. This can be done by
exploiting the flux continuity condition jb= j
(where j is the flux due to bulk transport through
the macroscopic layer) from which it follows that

n(d)
Rb

=
nb−n(d)

R conv%
(51)
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where R %conv is the static resistance of the diffusion
boundary layer (up to the point h=d). By elimi-
nating n(d) from Eq. (51) one obtains the explicit
expression for the overall flux in the form

j=n(d)/Rb=
1

Rb+R conv
’ nb=

1
Rexc+Rconv

nb (52)

where Rconv=R %conv+R0 is the static resistance of
the overall boundary layer in the absence of the
energy barrier. Rconv can be estimated from previ-
ous expressions for the limiting flux since j0=nb/
Rcon6. Using this expression one can transform Eq.
(52) into the form

j= j0
1

1+
j0
nb

Rexc

= j0
1

1+
j0
nb

& d

d m

eF/kT−1
D(h)

dh
(53)

The use of Eq. (53) requires evaluation of the
definite integral which can be cumbersome. How-
ever, for energy profiles exhibiting well-defined
maxima this integral can be evaluated analytically
giving for Rb the expression [60,63]

Rexc$Rb$
�2pkT

gb

�1/2eFb /kT

D(db)

=
a

D�

�2p kT
fb

�1/2

eFb /kT (54)

because

gb= −
�d2F

dh2

�
db

�
Fb/kT

d2 and D�D�
d

a

For a strongly asymmetric barrier, e.g. of a trian-
gular shape one can analogously express Rb as

Rb$
a

D�

kT
Fb

eFb /kT (55)

Substituting this expression into Eq. (53) one
obtains

j= j0
1

1+
j0a

D�nb

kT
Fb

eFb/kT

= j0
1

1+Sh0

kT
Fb

eFb /kT

(56)

where Sh0= j0a/D�nb is the dimensionless flux
(Sherwood number). If Fb\5kT, the relative flux
decreases exponentially with increasing barrier
height since

j/j0$
1

Sh0

�Fb

kT
�

e−Fb /kT (57)

The flux in the case when f=1 (F=f) given by
Eqs. (53–56) is denoted by j %0.

5. Non-linear deposition regimes

5.1. Surface blocking effects, the RSA and DRSA
models

The linear transport conditions described by the
above equations when f=1 are relatively short-
lasting, especially when concentrated suspensions
are involved. The deviations from linearity are
stemming from the presence of particles accumu-
lated at the interface which disturb locally fluid
flow and exert additional forces on adsorbing
(flowing) particles. This leads to the surface block-
ing effect (called also surface exclusion effect)
which are responsible for the reduction in particle
deposition rate at higher coverage. As pointed out
in [3] a rigorous theoretical analysis of these
many-body phenomena seems difficult without in-
troducing rather drastic simplifications concerning
the hydrodynamic and electrostatic interactions.
In the literature, these surface blocking effects are
introduced, usually in the form of flux correction
function B(U)= j/j %0 (where U=N Sg is the frac-
tional surface coverage, N is the surface concen-
tration and Sg is the characteristic particle
cross-section area, j is the flux in the presence of
particles) which depends solely on the surface
coverage of deposited particles. B(U) is tradition-
ally referred to as the blocking function, whereas
in the physical literature a more accurate notion
available surface function (ASF) is used [64,65].

The most obvious, but rather ill founded for
continuous surfaces, seems the Langmuir model
based on the assumption that B(U)=1–U/UL,
where UL is the ‘saturation’ coverage to be deter-
mined empirically. Using this function the adsorp-
tion flux j for particle covered surface is expressed
as

j= j %0
�

1−
U

UL

�
(58)
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Fig. 9. The blocking function B(U) for noninteracting parti-
cles determined numerically using RSA model (points). The
solid line represents the low coverage approximation calcu-
lated from Eq. (59) and the dashed line shows the Lang-
muirian model when B(U)=1−U/U� (U�=0.547).

exact numerical data obtained by the Monte-
Carlo simulation technique. As one can observe,
the above low coverage expansion works well for
UB0.3. The jamming coverage found from these
numerical simulations was 0.547. It should be
noted that the Langmuir model, i.e. when UL=
U� gives poor approximation of exact date for
the entire range of coverges.

The deviation from the Langmuir model be-
comes also pronounced for larger u close to the
jamming limit, when the blocking parameter can
be approximated by the formula [70,71].

B(U): (U�−U)3 (60)

One can deduce from Eq. (60) that the blocking
effects predicted in the RSA model are consider-
ably more pronounced than in the Langmuir
model. This originates from the fact that due to
topological constrains only a small fraction of the
free surface 1−U is available for particle adsorp-
tion, i.e. in the later adsorption stages most of the
unoccupied surface fragments (targets) are too
small to accommodate additional particles [3].

Similar results as that expressed by Eqs. (59)
and (60) can also be derived for interacting parti-
cle adsorption provided that the effective interac-
tion range remains much smaller than particle
dimensions [7,75,76]. Then, the many body elec-
trostatic interactions between adsorbed and ad-
sorbing particles can be approximated introducing
the effective hard particle concept [77]. It was
demonstrated that in this case the low coverage
expansion for B(U) assumes the form

B(U)=4(1+H*)2U+
6
3

p
(1+H*)4U2

+
� 40

p
3
−

176
3p2

�
(1+H*)6U3 (61)

where H*=h*/a is the effective interaction range
given by the expression [76]

H*= (ka)−1 ln f0/fch (62)

where f0=oa(kT/e)2Y( 1
02

, Y0
1=4 tanh(eY0

1/(4kT))
is the effective potential of the particle and fch is
the characteristic energy close to one kT unit [76].

It was also demonstrated that the jamming
coverage for interacting particles is given by the

where j %0 is the initial particle flux (discussed
above).

A more realistic description of blocking effects
can be attained using the random sequential ad-
sorption (RSA) approach developed originally for
hard (noninteracting) particles [64,66–73] and ex-
tended later on for interacting particles [7,74–76].

The RSA model, discussed extensively else-
where [3], can be applied for determining the
surface blocking parameter B(U), for modeling
adsorption kinetics and for determining the maxi-
mum jamming coverages U� (when no more par-
ticles can be put on the surface). It was found that
for hard spheres and not too high surface cover-
ages the blocking function can well be approxi-
mated by the formula

B(U)

=1−4U+
6
3

p
U2+

� 40

p
3
−

176
3p2

�
U3+0(U4)

(59)

In Fig. 9 the results stemming from this equation
(with the third term neglected) are compared with
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simple expression (referred to as the maximum
coverage Umx)

Umx=
U�

(1+H*)2 (63)

The dependence of H* on the ka parameter
determined numerically for spheres and spheroids
is plotted in Fig. 10. As can be observed Eq. (62)
is a good approximation for the entire range of
ka.

It should be mentioned that the blocking effects
in the Langmuir and RSA models discussed above
are treated as purely surface phenomena. In real-
ity, due to finite particle size, the blocking effects
are extending into the bulk of the particle suspen-
sion over the distance comparable with particle
diameter. This leads to a change in particle chem-
ical potential as described by Eq. (39). Physically,
this effect can be interpreted as if an energy
barrier (U, h) fs=kT ln ffs was formed (some-
times referred to as the steric barrier [55]) whose
magnitude is growing with particle coverage. The

height of barrier at the interface f0
s equals −

kT ln B(U) and it vanishes for distances exceed-
ing the effective particle diameter. Analogously as
for the electrostatic interactions, the influence of
this barrier on particle transport can be analysed
in terms of the SFBLA. In this way the following
general expression describing particle flux was
derived [65]
j(U)

jd
=B( (U)

=

& d

dm

ef/kT

D(h)
dh& d

dm

ef/kT dh
D(h)

+
& d

d m

[efs (U, h)/kT−1]
ef/kT

D(h)
dh

(64)

where jd is the flux through the layer of thickness
in absence of the steric barrier and B( (U) is the
generalised blocking function.

It is difficult to evaluate B( (U) explicitly because
fs is dependent not only on particle coverage but
also on particle distribution over the surface.
However, it was demonstrated in [65] that the
differences between this generalised approach (re-
ferred to as the DRSA model) and the usual RSA
model discussed above are not too significant for
small and moderate surface coverages except for
the case of dense particles sedimentating to the
interface. Then, the so called ballistic model be-
comes more appropriate [78]. For higher surface
coverages no exact results for B( (U) were reported
although it was demonstrated that the jamming
limit is the same as for the classical RSA model
[79].

Eq. (64) describes the transport through the
layer of thickness d (equal to the effective particle
size) where the fluid convection is neglected. In
practice, for protein and colloid suspensions, d is
very small in comparison with the overall diffu-
sion boundary layer thickness where the convec-
tion or external force dominate. In order to derive
equations characterising the overall transport rate
one can use the SFBL concept by postulating that
the overall transport resistance is a sum of the
steric resistance 1/B( (U) governed by and the bulk
resistance Rconv. Then, using Eq. (53) one can
formulate the expression for the flux in the pres-
ence of deposited particle in the form

Fig. 10. The dependence of the effective interaction range H*
on the ka (Le=1/ka) parameter [76]. The points represent
exact numerical results obtained from numerical simulation
performed according to the RSA model and the continuous
line shows the represents the analytical results calculated from
Eq. (62).
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j(U)
j %0

=B0 (U)=
Ka

Ka−1+
1

B( (U)

(65)

where

Ka=
1

j( 0%
& d

dm

ef/KT

D(h)
dh

(66)

where j( 0% is the reduced initial flux discussed previ-
ously and B0 (U) is the overall blocking function.

When Ka assumes values much larger than
unity (as is the case for protein and colloid parti-
cle transport) Eq. (65) simplifies to

B0 (U)=1−
� 1

B( (U)
−1

�
/Ka

$1−
� 1

B(U)
−1

�
/Ka (67)

Eqs. (65)–(67) indicate that in the influence of the
surface blocking effects on particle adsorption
rate will be negligible as long as the inequality
Ka�1/B( (U) holds.

However, the surface blocking effects always
become important when surface coverage ap-
proaches the jamming (or maximum) values Umx

because 1/B( (U)�� and

j
nb

$ j( 0%Ka B( (U)=
1& d

d m

efs(U,h)/kT ef/kT

D(h)
dh

(68)

It is not possible to evaluate this integral in a
general case because the dependence of the steric
barrier fs(U, h) on the distance is not known for
higher coverages. However, noting that the steric
barrier is the highest at primary minimum one can
use the SFBLA to show that particle flux can be
approximated by the expression

j
nb

=CsB(U) (69)

where the dimensionless constant Cs of the order
of unity can be assumed fairly independent of
coverage [55].

The RSA models discussed in this section are
expected to describe adequately deposition of sub-
micrometer sized particles for which the diffu-
sional transport dominates at distances

comparable with particle diameter and when there
is no coupling between the specific and hydrody-
namic force fields. For larger particles the hydro-
dynamic flow penetrates the surface layer and a
significant coupling between the electrostatic and
hydrodynamic force fields occurs. This is leading
to the hydrodynamic scattering effect (HSE) en-
hancing the surface blocking phenomena as diss-
cussed below.

5.2. The hydrodynamic blocking

As previously demonstrated (See Figs. 7 and 8)
particle trajectories in the vicinity of an attached
particle become highly asymmetric due to the
presence of short-range repulsive interactions (due
to, e.g. roughness of the particle surface or elec-
trostatic interactions). As a result, the probability
of particle deposition behind the attached particle
is strongly reduced over distances exceeding parti-
cle dimension. The size and shape of the hydrody-
namic ‘shadow’ is also dependent on particle/wall
specific interactions and Brownian motion of par-
ticles which makes a quantitative analysis of this
problem prohibitive. However, useful approxima-
tions can be derived by exploiting the stochastic
trajectory analysis presented in [43,80]. Typical
results obtained from these simulations for a 1 mm
of diameter particle immersed in the plane-parallel
stagnation flow (corresponding to the SIJ cell
discussed above) are shown in Fig. 11. The den-
sity of the points is proportional to the adsorption
probability of the flowing particle in the vicinity
of an attached one. Qualitatively, it can be ob-
served that the width of the shadow increases with
the double-layer thickness (characterised by the
ka parameter), whereas its length seems indepen-
dent of this parameter. Detailed numerical studies
of this effect performed in [43] for the case of
plane-parallel stagnation flow enabled one to for-
mulate the following equation describing the geo-
metrical area of the shadow

S( 1*=
S1*
pa2=4(1+H*)2+Ch(1+H*)Penx

a
(70)

where Pe, is the previously defined Peclet number
and Ch,n are the dimensionless fitting parameters
which have to be determined by simulations.



Z. Adamczyk et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 165 (2000) 157–187 177

Fig. 11. The simulated Brownian electro-hydrodynamic shadow behind the particle attached to the interface in the stagnation line
flow for Pe=0.1, x/a=315. Part A for ka=7, B for ka=16 and C for ka=50. Solid circle represents the contour of the attached
particle, dashed circle is the area blocked by the charged particle in absence of flow.

These results are directly applicable for the SIJ
cell and cylinder in simple shear at distances not
too far from the symmetry plane. Although nu-
merical simulations were not reported, it seems
that Eq. (70) is also applicable for the stagnation
point flow, i.e. for the sphere in uniform flow and
the SIJ cell in the vicinity of the symmetry point.
However, at larger distances from the stagnation
point (or stagnation plane in the case of the
cylinder) the perpendicular velocity component
vanishes and the flow around the sphere and
cylinder becomes similar to the simple shear flow
as discussed previously. The same is valid for the
SIJ and RIJ cells at dimensionless distances larger
than 0.5 (cf. Fig. 5). A dimensional analysis would
suggest that in this case n=1, although no nu-
merical results were reported. It can also be pre-
dicted that this hydrodynamic blocking effect
(referred also to as the hydrodynamic scattering
effect HSE) should be the largest in the region
close to the rear of the spherical and cylindrical
collectors because the perpendicular fluid velocity
component is directed outwards from the surface.
However, the flux in this region is already very
small so the HSE will be difficult to observe.

Knowing the dimensionless surface area
blocked by one particle S*1 one can apply the
RSA analysis for predicting blocking effects as a

function of U which results in the following ex-
pansion [9]

j
j0

=B(U)$1−C1hU+C2hU
2 (71)

where C1h=S( *1 and C2h=qC2
1h, q is the dimen-

sionless geometrical constant equal to 1/8 in the
case when the real shape of the shadow is approx-
imated by a rectangle [9]. Due to mathematical
difficulties and limited accuracy of the expression
for S*1 , only two terms of the expansion were
specified.

From Eq. (71) one can deduce that the ‘appar-
ent’ saturation coverage US (when B=0) equals

Us=
C1h

2C2h

�
1−

'
1−

4C2h

C1h
2

n
=

1−
1−4q
2q

1

(1+H*)
�

4 (1+H*)+C1hPenx
a
n (72)

One can deduce from the above relationship that
in the case when the product Pen(x/a) assumes
large values (particle size above micrometer and
intense flows) the saturation coverage becomes
much smaller than unity and is given by the
asymptotic formula
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Us�
1

C1h(1+H*)Penx
a

�
1

[as(Re)Re ]na4n−1x
(73)

This equation suggests, contrary to intuition, that
the increase in flow rate (Re number) will result in
a considerable decrease in the amount of particle
deposited under steady-state conditions. The ef-
fect is expected to play a more significant role for
simple shear flows (n=1) when the perpendicular
component of fluid velocity vanishes.

Although the above analytical results are of
limited accuracy they seem to reflect the most
important features of hydrodynamically driven
blocking. These equations are significantly more
convenient for estimations of large particle depo-
sition kinetics than the cumbersome Brownian
Dynamic simulations [3]

6. Experimental results

6.1. Experimental method — general remarks

The literature concerning experimental mea-
surements of colloid particle deposition at solid/
liquid interfaces is fairly extensive and has been
reviewed in some detail in our previous reviews
[1–3,55] and books [17,18]. In this paper we
present some selected experimental results ob-
tained under well-defined transport conditions
which elucidate the decisive role of the coupling
between hydrodynamic and specific force interac-
tions in particle deposition processes.

There exists a large variety of experimental
methods aimed at a quantitative determination of
colloid particle adsorption kinetics either indirect
or direct as discussed in [3]. The simplest to
implement are the indirect methods when the
suspension concentration changes in the bulk are
measured prior and after contact with the adsor-
bent (interface). The depletion of the solute con-
centration is often determined by turbidimetry
[81], interferometry or nephelometry [82] or by
applying the HPLC and FPLC methods coupled
with appropriate detecting system [83,84]. Some-
times fluorescent [85] or radioactive [86] labeling
of the adsorbate is used. Another class of indirect

methods is based on measurements of the signal
stemming from the adsorbed particles, as is the
case in ellipsometry [11], reflectometry [12–15]
radioactive labeling [87–91] or streaming poten-
tial measurements [92–95]. The disadvantage of
these methods is that one can usually gain a
global information averaged from a considerable
surface area of the interface. As an results, any
detailed information about the local structure of
the mono-layer (e.g. density fluctuations or inho-
mogeneities) is not available.

It seems that an unequivocal determination of
particle adsorption kinetics and structure of ad-
sorbed layers can only be achieved using the
direct methods based on optical, AFM or electron
microscope observations. For suspensions of
larger sized colloids or bacteria the number of
particle adsorbed can be determined in situ, in a
continuous manner using the optical microscopy
coupled with a micrograph [6–9] or image analy-
sis techniques [10,96,97]. Usually, the well-defined
transport conditions are realized using the above
described impinging-jet cells. Recently, the AFM
tapping mode was used for direct in situ imaging
of latex particle (diameter 0.116 mm) adsorbed on
mica [98,99]. However, the use of this technique
awkward due to artifacts stemming from tip-in-
duced aggregation of the suspension, convolution
of the tip and particle signal, adhesion of particles
to the tip etc. A considerably better resolution can
be achieved by imaging the particle in the air
upon drying the sample. In this case the size of
individual adsorbed particles can be determined
with a high accuracy [99]. However, the drying
procedure is a rather invasive technique leading to
distortion of particle structure or removal of par-
ticles from the surface.

Due to reliability of the direct methods they
seem to be the most appropriate for a quantitative
verification of theoretical predictions, especially
those concerning initial deposition rate when the
surface coverage remains of the order of a
percent.

6.2. The initial deposition rates

The occurrence of the linear deposition regimes
under barrier-less transport conditions in experi-
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ments involving colloid particles was often
demonstrated [1–3,55]. The quantity which was
measured directly in these experiments was the
number of particles Np found over equal-sized
surface areas DS selected at random at a fixed
distance from the cell center [9]. Then, the aver-
aged value of BNp\ is determined which can be
used for calculating particle flux from the
equation

j( 0=
j0
nb

=
D�Np�
nbDSDt

=
1

pa2

DU

nbDt
(74)

where DBNp\ is the change in the averaged
number of particles adsorbed over DS within the
time interval Dt (after a given adsorption time t).
In order to increase the accuracy of j( 0 determina-
tion averages from many experiments with differ-
ent nb are taken and the nonlinear curve fitting
procedure is applied [9]. The relatively high accu-
racy of the initial flux measurements can be ex-

ploited for determining applicability of the
convective diffusion theory, in particular the
Smoluchowski–Levich approximation.

Typical results obtained in the RIJ cell using
mono-disperse polystyrene latex suspensions of
negatively charged particles are shown in Fig. 12.
Particle deposition occurred at modified mica sur-
face (positively charged) which assured localized
and irreversible adsorption conditions. The ionic
strength in these experiments was kept relatively
high (10−3 M) in order to eliminate the electro-
static interactions. The results shown in Fig. 12
suggest that for particles having size below 1 mm,
j( 0 can well be reflected by the Smoluchowski–
Levich approximation given by Eq. (43), predict-
ing that the initial flux decreases with particle size
according to a−2/3. This indicates that the diffu-
sion and convection were the dominating trans-
port mechanisms.

On the other hand, for particle sizes above 1
mm the interception effect described by Eq. (45)
was playing an increasingly important role, espe-
cially for higher flow rates (Re=150). This causes
a considerable (manyfold) increase of the initial
flux over Levich’s theory predictions. It should
also be noted that the numerical solutions of the
exact transport equation, Eq. (42a) reflect well
with the experimental data for the entire range of
particle sizes studied.

Since according to Eq. (45) the interception
effect should increases parabolically with the ef-
fective particle size, one may expect that electro-
static interactions should play a significant role in
particle deposition at initial stages. This effect is
illustrated in Fig. 13 where the results obtained in
the RIJ cell using mono-disperse latex suspension
(averaged particle diameter 0.68 mm) are pre-
sented. As one can notice, for I\10−3 M, the
electrostatic interactions seem to be effectively
eliminated since the limiting flux j( 0 attains a
plateau value for all Re number studied (8–150).
This confirms that the results shown previously in
Fig. 12 can be treated as the limiting values,
characteristic for hard particles. On the other
hand, for decreasing ionic strength, the limiting
flux is enhanced considerably over the hard parti-
cle values (for Re=150 this increase is about four
times). It should be observed that the flux increase

Fig. 12. The dependence of the reduced initial flux j( 0= j0/nb on
particle diameter d. The points show the experimental results
obtained in the RIJ cell at I=10−3 M using various
monodisperse latex suspensions [6]. The solid lines are the
exact numerical solutions of the convective diffusion equation
and the broken lines show the data calculated using the
Smoluchowski–Levich approximation (Eq. (43)). 1: Re=150
2: Re=30.
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Fig. 13. The dependence of the reduced flux j( 0= j0/nb on the
ionic strength of the latex suspension regulated by addition of
various electrolytes. The points denote the experimental data
obtained in the RIJ cell for various electrolytes, i.e. KCl, CsCl,
LiCl, BaCl2, K2SO4 latex particles (d=0.68 mm adsorbing at
mica). 1: Re=150; 2: Re=80; 3: Re=28; 4: Re=8; the
continuous lines show the theoretical results obtained from
exact numerical solution of the convective diffusion equation
(Eq. (42)).

from 0.08 to 2.51 mm with the ionic strength
varied between 5×10−6 M (deionized water) to
0.1 M. The number of particles adsorbed was
determined indirectly (depletion method) by mon-
itoring the optical density change at the outlet of
the column. It was found that the increase in the
initial particle flux was larger than four times
when using deionized water. This effect was quan-
titatively interpreted in terms of the numerical
solutions of the continuity equation discussed
above. Similar results were obtained for larger
particle sizes although the measured particle de-
position rates were generally smaller than pre-
dicted theoretically [100]. This deviation can
probably be explained by the hydrodynamic scat-
tering effect which may occur at surface coverages
as low as a few per cent, affecting therefore the
initial flux determination. This is discussed in
more detail later on.

Other data confirming the significant role of
attractive double-layer interactions in particle de-

Fig. 14. The normalized particle flux j0/nb vs. the Reynolds
number Re determined experimentally for the monodisperse
latex suspension (d=1.48 mm) in the slot impinging-jet cell for
various ionic strength. 1: I=2×10−5 M; 2: I=10−4 M and
3: I=10−3 M. The solid lines denote the theoretical results
obtained from numerical solution of transport equation, the
dashed line shows the results of the Smoluchowski–Levich
approximation.

remains fairly independent (within experimental
error bounds) of the kind of electrolyte used, i.e.
KCl, CsCl, LiCl, BaCl2 and K2SO4 (at equal ionic
strength). Thus, the flux enhancement for larger
particle size and the indifference to electrolyte
composition is in a good agreement with the
effective hard particle concept described by Eqs.
(45) and (46). Note also that the numerical results
(continuous lines in Fig. 13) are in a quantitative
agreement with the experimental data for the
entire range of ionic strength investigated.

The increase in the initial flux in dilute elec-
trolyte solutions due to the interception effect is
an universal phenomenon occurring for other flow
configurations more related to practice, e.g. for
the spherical collector discussed above. This was
demonstrated by Elimelech [100] who carried out
a series of throughout experiments on particle
deposition (filtration) in columns packed with
glass beads. The suspensions used were positively
charged latex particles of various size ranging
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Fig. 15. Adsorption kinetics of 0.94 mm latex particles on
silanized mica measured in the centre of the slot impinging-jet
cell for Re=8, nb=4.4×108 cm−3 in 1: 10−3 M; 2: 10−4 M
and 3: 1.2×10−5 M KCl. Solid lines represent the RSA
simulations.

The above presented results and others dis-
cussed elsewhere [1–3,55] seem to confirmed
quantitatively the validity of the convective diffu-
sion theory for predicting deposition kinetics of
arbitrary sized particles. However, these results
are valid for limiting range of surface coverage
only, because for higher coverages, the blocking
effects dominate as discussed below.

6.3. Non-linear adsorption kinetics

Most of the experimental results presented
hereafter were obtained in the stagnation flow
cells for micrometer sized particles with gravity
acting opposite to the interface. Under such cir-
cumstances one can expect that the surface block-
ing effects can well be characterised by the RSA
model, especially for moderate Re number when
the diffusion boundary layer thickness remains
comparable with particle diameter and the HSE is
not too important. Typical kinetic curves mea-
sured under these circumstances for various ionic
strength are shown in Fig. 15 (the SIJ cell, aver-
aged particle size 0.94 mm, Re=8, bulk suspen-
sion concentration nb=4.4×108 cm−3 [10].

One can observe that for initial deposition
stages (for coverage UB0.1) the slope of the
kinetic curves (particle flux) decreases with ionic
strength in accordance with previous discussion
(see Fig. 13). On the other hand, for longer ad-
sorption times an opposite trend is observed, since
the adsorption flux (the slope of the U vs. time
dependence) is the smallest for the lowest ionic
strength, i.e. I=1.2×10−5 M. In the latter case
the flux becomes practically negligible after reach-
ing the surface coverage of 0.26. It is also interest-
ing to observe that the experimental data shown
in Fig. 15 can well be accounted for by the RSA
model with the blocking function B(U)=1−
C1U+C2U

2. The kinetic curves were obtained by
integrating this relationship in respect to time
which resulted in the equation

U=U1

1−e−pC1t/tch

1−
U1

U2

e−pC1t/tch

(75)

where tch=1/pa2j( 0nb.

position phenomena are presented in Fig. 14.
These results were obtained in the SIJ cell using a
mono-disperse latex suspension (averaged particle
size 1.48 mm) [10]. As can be observed the agree-
ment between the experimental and theoretical
data is satisfactory for the entire range or Re
number studied. It should be noted that for ReB
4 (which corresponds to PeB10−2) the experi-
mental results approach the same limiting curve
which suggests that for low Reynolds number
flows the attractive electrostatic interactions exert
negligible effect on particle deposition rate. It
should be noted, however, that even at such low
Re number the experimental results and the theo-
retical predictions are well below the Smolu-
chowski–Levich predictions (depicted by the
broken line in Fig. 14). This deviation can be
explained by the sedimentation of particles out-
wards from the surface (the specific particle den-
sity was 1.05 g cm−3) and partially by the
increased hydrodynamic resistance of particle
moving perpendicularly to a wall (cf. Fig. 6). On
the other hand, for increased Re number the
measured flux values exceed manyfold these stem-
ming from the Smoluchowski–Levich theory
which is a spectacular manifestation of the cou-
pling between hydrodynamic and electrostatic
force fields.
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,
4C2
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j( 0 is the initial flux determined from exact solution
of the transport equation. The results shown in
Fig. 15 demonstrate unequivocally that the cover-
age attained after longer adsorption time are con-
siderably increased for higher electrolyte
concentration. It should be mentioned that
analogous trends were observed in the kinetic
measurements of Johnson and Lenhoff [98] per-
formed by the AFM method using the amidine
latex particles (mean diameter 0.116 mm) ad-
sorbing at freshly cleaved mica. Similarly, John-
son and Elimelech [101] demonstrated that the
kinetic breakthrough curves of packed bed
columns depend significantly on the suspension
ionic strength in accordance with the RSA model
discussed above. The commonly used Langmuir
model was proven inaccurate in this case.

Further evidences of the validity of the RSA
model for characterising protein adsorption were
reported by Ramsden [102].

The good agreement of the experimental data
shown in Fig. 15 and the data reported by John-
son and Elimelech [101] with the classical RSA
model is probably caused by the fact that the
diffusion boundary layer thickness was compara-
ble with particle diameter, hence the dimension-
less constant Ka was close to unity. Under such
circumstances the overall blocking function B0 (u)
can be expressed according to Eq. (65) as

B0 (u)=Ka B( (u) (76)

As B( (u) stemming from the DRSA model is
slightly smaller the B(u) calculated from the RSA
model and Ka is slightly larger than unity the
product of the quantities can be close to the
blocking function of the classical RSA model,
given by Eqs. (59) and (60).

However, for lower Re flows or for small parti-
cles, e.g. proteins, the value of Ka becomes much
larger than unity and the above discussed cou-
pling of the bulk and surface transport becomes
important as predicted by Eq. (65). No quantita-
tive results for this case were reported in the

literature although the recent data of Bohmer et
al [14] and Semmler et al [99] obtained by reflec-
tometry and the AFM technique would suggest
that this equation is valid. It seems that further,
more precise experiments are needed for a unam-
biguous determination of deposition kinetics un-
der diffusion-controlled regime and for assessing
the range of validity of the RSA and DRSA
models in these processes.

From practical viewpoint, a more interesting
then these subtle differences in deposition kinetics,
is the maximum coverage Umx attained after
longer deposition times. As can be deduced from
Eqs. (62) and (63), this quantity is considerably
affected by the ionic strength of the suspension.
Many experiments were reported in the literature
aimed at determining U� as a function of ionic
strength and particle size. The mono-layer density
was determined mostly using the direct methods
based on electron microscope AFM or optical
microscope counting of adsorbed particles. These
data discussed extensively in the recent review [55]
proved that the classical RSA model with the
modification for the effective interaction range as
described by Eq. (63) works well for ka\2. In
accordance with this equation it was found that
for ka=10 the maximum coverage Umx is almost
two times smaller than the maximum jamming
limit for hard spheres U� (=0.547 as previously
stated). For ka=100 the deviation is of the order
of 2 percent.

6.4. The hydrodynamic scattering effect

All these results were obtained under conditions
when diffusion was the predominant transport
mechanism, hence the HSE was not operating.
However, as mentioned above, for larger particles
and higher Re flows, the hydrodynamic blocking
effects should decisively influence deposition ki-
netics and the maximum coverages as predicted
by Eq. (72). This can be observed in Fig. 16 where
the data obtained in the SIJ for 1.48 mm of
diameter latex particles are plotted [10]. Particle
deposition was measured at the distance of 158
mm from the cell symmetry plane so the product
Pen(x/a) was relatively high, i.e. 3.2 for Re=2, 31
for Re=8 and 90 for Re=16. One can notice
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that the increase in flow rate diminished signifi-
cantly particle deposition rate at longer times.
Accordingly, the apparent saturation coverage de-
creased monotonically with the flow rate attaining
values as low as 4% for Re=16. It should be

noted that the kinetic curves can well be reflected
for the entire range of dimenionless time t= t/tch

by the theoretical results (continuous curves)
derived from numerical simulations (Brownian
Dynamics method described in [3]). Also, the
approximate analytical results calculated from Eq.
(75) (with the C1=C12, C2=C22 seem to be in a
good agreement with the experimental data. This
conclusion is further confirmed by the results
presented in Fig. 17 where the influence of ionic
strength on particle deposition kinetics is shown
(SIJ cell, latex particles 1 mm of diameter, distance
158 mm from the cell center). As can be observed,
the increase in the ionic strength exerted an oppo-
site effect on particle deposition kinetics which
was the slowest for Re=16 and ionic strength of
2×10−5 M. In this case the apparent saturation
coverage was less than 5%. One can observe again
that the analytical dependence, Eq. (75) describes
well experimental data predicting also properly
the apparent saturation coverage Us given by Eq.
(72). One may deduce, therefore, from the data
shown in Figs. 16 and 17 that the hydrodynamic
scattering effect is the decisive factor in deposition
phenomena of micrometer sized particles, espe-
cially at lower ionic strength.

Another important manifestation of the HSE is
that the apparent saturation coverage Us should
depend on the dimensionless distance from the
cell center. This prediction was confirmed by ex-
perimental measurements in the SIJ cell using the
1 mm of diameter latex particles. As can be seen in
Fig. 18 the saturation coverage decreases
monotonically with the distance from the cell
center x/a in a quantitative agreement with the
theoretical predictions stemming from Eq. (72).
Since the flow distribution in the SIJ cell is very
similar to the cylindrical collector (see Fig. 3) one
may expect that the results presented in Fig. 18
can be used for predicting the saturation coverage
distribution over the cylinder surface.

It should be emphasised that the saturation
coverages observed for long adsorption times and
larger distances far from the cell center are not the
equilibrium or jamming coverages since particle
adsorption was irreversible and only a small frac-
tion of the interface was covered. The apparent
saturation of the surface is a purely kinetic due to

Fig. 16. Adsorption kinetics of the latex particles (d=1.48 mm)
expressed as the dependence of U (measured at the distance of
158 mm from the cell centre) on the dimensionless adsorption
time t (I=10−4 M); the points show experimental results
obtained for (1) Re=2; (2) Re=8 and (3) Re=16. The solid
lines represent the SBD simulations.

Fig. 17. Adsorption kinetics of latex particles (d=1 mm) at
silanized mica observed in the slot impinging-jet cell at the
distance of 158 mm from the centre for Re=2 (empty symbols)
and Re=16 (filled symbols). Triangles I=2×10−5 M,
squares I=10−4 M and circles I=10−3 M KCl. Lines repre-
sent results calculated from Eq. (75) with Us given by Eq. (72).
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Fig. 18. The quasi-saturation coverage Us of the monodisperse
latex particles (d=1.48 mm) at silanized mica as a function of
distance from the stagnation line x/a. Empty symbols Re=2
(Pe=0.05), filled symbols Re=16 (Pe=1.1).

age was reached (see Fig. 19) Then, for t=1.6 the
flow rate was decreased eight times (to Re=2).
This promoted further particle adsorption until a
new saturation coverage was reached, almost
three times higher that the previous one. Note
that also in this case the numerical simulations are
in a good agreement with experimental data.

Although the mean features of the hydrody-
namically driven blocking were quantitatively
confirmed in the above discussed experiments
there is still need for additional experiments to be
performed for other flow configuration, especially
for the simple shear.

7. Conclusions

It was theoretically demonstrated that the flow
pattern in the RIJ and SIJ cells matches closely
the flow in the vicinity of the spherical and cylin-
drical collector, respectively. This concerns both
isolated collectors as well as those forming a
structured layer, like the packed bed or filtration
mat. Hence, the experimental results obtained in
these cells can quantitatively be transferred to
these more complicated collector geometry,
difficult to study in a direct way.

The analysis of available experimental data ob-
tained using these cells showed that for sub-
micrometer sized particles the initial deposition
flux can well be described by the Smoluchowski–
Levich approximation neglecting the interception,
external force, and hydrodynamic wall effects.
For this particle range the specific interactions
may exert an influence on particle transport when
forming a potential barrier only. Then, the initial
flux can be predicted from the SFBLA, i.e. from
Eq. (53). The concept of the potential barrier can
also be used for describing the blocking effects
due to the presence of deposited particles. It was
predicted, however, that in the case when the
thickness of the diffusion boundary layer exceeds
considerably particle diameter (small particles,
low Re flows) the influence of blocking effects
remains negligible until the maximum coverages
Umx are approached. These limiting coverages can
be calculated from Eq. (63) derived by exploiting
the effective hard particle concept.

Fig. 19. Adsorption kinetics of latex particles (d=1 mm) at
silanized mica determined for x=158 mm (I=10−4 M). The
filled circles show results of a composite experiment when at
the time t=1.6 (t=455 min) the Reynolds number was
decreased from Re=16 (initially) to Re=2. The crosses show
the results of a simple experiment when the flow rate remained
constant. The solid line represents the SBD simulations.

the HSE. This was unequivocally demonstrated in
[9,10] by performing a ‘composite’ kinetic mea-
surement. At the beginning particle adsorption
was carried out for flow rate corresponding to Re
number=16 until the apparent saturation cover-
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For particle size approaching micrometer and
above the Smoluchowski–Levich approximation
fails due to increasing role of the interception
effect enhanced by attractive electrostatic interac-
tions and external forces (gravity). In this case j0
can only be determined in an exact manner by
numerical solutions of the rigorous transport
equation. Approximate results for the interception
effect can, however, be derived from Eq. (45)
which shows that the initial flux is significantly
increased for low ionic strength suspensions (in-
verse salt effect).

For this particle range the blocking effects due
to adsorbed particles play a significant role al-
ready for low coverages. When the local shear
rate is small these blocking effects can well be
approximated by the RSA model with the modifi-
cation for the effective particle size. As a result,
for higher coverage and low ionic strength, parti-
cle flux is considerably reduced due to increased
lateral repulsion among deposited and flowing
particles.

For larger shear rates the blocking effects are
significantly enhanced due to the nonlinear cou-
pling between the electrostatic and hydrodynamic
force fields. This leads to the hydrodynamic scat-
tering phenomena which can only be analysed
numerically in the general case. As a result of
hydrodynamic scattering the maximum coverage
attained after long deposition time decrease con-
siderably with increasing flow rate which can be
described by Eq. (72). Accordingly, the higher
coverage can only be attained for low Re number
flows which was also demonstrated
experimentally.

Although the mean features of the hydrody-
namic blocking were confirmed there is still need
for additional experiments to be performed for
other flow configuration, especially for the simple
shear.
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[51] T. Dąbroś, T.G.M. van de Ven, Int. J. Multiph. Flow.

18 (1992) 751.
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