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Similarly, the shape of important globular proteins like
Kinetics of localized adsorption of interacting spheroidal parti- bovine serum albumin (BSA) or fibrinogen (3–6) resembles

cles on homogeneous interfaces was analyzed theoretically. In con- prolate spheroids with the axis ratio about 0.28 and 0.2–
trast to previous studies, in our present approach an unoriented

0.18, respectively.(quasi-3D) adsorption of prolate and oblate spheroids was consid-
Other examples of highly anisotropic particles are the redered. By applying the random sequential adsorption (RSA)

blood cells, blood platelets, pigments, and synthetic inor-method, numerical Monte Carlo type simulations were performed
ganic colloids: gold, silver iodide, silver bromide, bariumfor colloidal particles interacting via a repulsive potential stem-

ming from the electrostatic double-layers (exponentially decaying sulfate, etc. (7–9). Also, model polymeric colloid system
Yukawa-type potential) . The surface blocking parameter (avail- of nonspherical monodisperse particles, e.g., PTFE or poly-
able surface function) and adsorption kinetics were determined for styrene latexes (10) or silica covered bohemite (11), can
various particle shapes and for a broad range of the ka parameter now be prepared in a reproducible way.
characterizing the range of the interaction potential. It was demon-

Adsorption of bioparticles and colloids proceeds usuallystrated that the ‘‘exact’’ numerical results can well be described for
via a more complex path than molecular adsorption andnot too high surface concentrations by the approximate analytical
often appears irreversible due to specific interactions withexpressions derived using the equivalent hard particle concept.
the interfaces. Moreover, the kinetics of particle adsorptionOn the other hand, for surface concentrations close to jamming,

adsorption kinetics of interacting particles can well be approxi- and structure of adsorbed layers can be influenced by exter-
mated by the power-law dependencies analogous to hard particles. nal force fields (e.g., gravity or inertia in a centrifuge, mag-
The theoretical analysis revealed that adsorption rate of colloid netic forces) or hydrodynamic flows.
particles having a spheroidal shape is considerably diminished by For higher surface concentrations the particles which ac-
the lateral electrostatic interactions. q 1997 Academic Press

cumulated at the interface disturb the local velocity and elec-Key Words: adsorption; spheroidal particles; electrostatic inter-
trostatic fields and exert additional forces on adsorbing parti-action; particle adsorption kinetics; spheroidal particle adsorption.
cle thereby excluding them form certain places at the inter-
face. This leads to the surface-blocking effects (called also

INTRODUCTION volume-excluding effects) which decrease particle adsorp-
tion rate for higher surface concentrations. An exact theoreti-

Adsorption of colloid and bioparticles at solid/ liquid in- cal analysis of these effects seems rather cumbersome
terfaces is of large practical significance in various technolo- without accepting drastic simplifications concerning the
gies involving filtration steps. Learning about mechanisms

many-body hydrodynamics and specific interactions among
and kinetics of these phenomena is also relevant for polymer

adsorbed and adsorbing particles (12–14).
and colloid science, biophysics, and medicine enabling better

One of the most widespread ways of accounting for thecontrol of protein and cell separation processes, enzyme im-
nonlinear effects is to introduce the surface blocking parame-mobilization, and prevention of thrombosis, biofouling of
ter B(u) (often referred to as the available surface functionartificial organs, etc.
f) as a natural extension of the Langmuir approach derivedIt should be noted that the shape of most surfactant mole-
for gas adsorption (15).cules and bioparticles deviates from a spherical shape ana-

For liquid phase adsorption, however, the Langmuirlyzed usually in various theoretical and experimental studies
model does not seem to be appropriate, although, it may beof adsorption kinetics. Various bacteria strains resemble
useful for low surface concentrations (14). Neverthless, dueelongated spheroids, e.g., the E. Coli bacteria having the
to its simplicity, the Langmuir model is widely used forwidth to length ratio of about 0.5 (1) or the bacteria from
describing the blocking effects of proteins (16–18), colloidsthe Actinomyces group characterized by a much larger elon-
(14, 19–23), and bacteria (24–25).gation (2) .

A more realistic theoretical determination of B for colloi-
1 To whom correspondence should be addressed. dal particles can be achieved using the recent theoretical
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349SPHEROID ADSORPTION

models, especially various mutations of the random sequen- remain time independent; i.e., adsorption is postulated local-
ized and irreversible.tial adsorption (RSA) approach developed in (26–29).

Despite the simplicity of the underlaying assumptions the
Let the RSA process proceed for some time t . Then, theretopology of particle distributions generated in RSA pro-

are N particles adsorbed at the interface whose positionscesses becomes complex for higher surface concentrations
are characterized by surface position vectors r1 , r2 , . . . rNand analytical solutions become possible only for one-di-
(which are projections of the corresponding 3D center posi-mensional (1D) adsorption (30–31). A proper description
tion vectors on the adsorption plane) and the orientationof the RSA process for spherical particles in 2D was
vectors (of the symmetry axes) ê1 , ê2 , . . . êN (see Fig.achieved in terms of the Monte Carlo type computer simula-
1) . The position of the N / 1 adsorbing (virtual) particletions (14, 26–29, 32–33).
is characterized by the surface position vector rv and orienta-On the other hand, the RSA results for nonspherical parti-
tion vector êv (Fig. 1) .cles are rather scarce and concern mostly noninteracting

According to assumption (ii) , for this particle configura-(hard) particles adsorbing flat (side on) such as cubes (34–
tion, the probability density of placing the virtual particle35), cylinders (36), spherocylinders (37), and spheroids
within the infinitesimal surface element dS ( located at the(37–38). In these cases adsorption can be treated as a two-
point rv) under the orientation êv is given by the Boltzmanndimensional (2D) process.
law, i.e.,The side-on adsorption of prolate spheroids interacting

via the screened electrostatic potential was recently studied
dp(r1 , r2 , . . . rN , rv , eP 1 , eP 2 , . . . , eP N , eP v)Åe0fv/kTdS , [1]in (39).

Despite its practical significance, however, no results were
where k is the Boltzmann constant, T the absolute tempera-reported yet for interacting anisotropic particles which can
ture, and fv(r1 , r2 , . . . rN , rv , ê1 , ê2 , . . . , êN , êv) ú 0undergo adsorption under an arbitrary orientation of the sym-
is the interaction energy of the adsorbing particle with allmetry axis relative to the interface. This adsorption regime,
the previously adsorbed particles; fv becomes infinite whenreferred to for sake of convenience as three-dimensional
particles overlap.(3D) or unoriented adsorption, seems pertinent to surfactant

According to definition (14) the surface blocking parame-and protein adsorption, especially at higher coverages when
ter B is equal the probability of placing the virtual particlethe flat orientation of molecules (or particles) is prohibited
under a given orientation at the interface covered with parti-due to steric constrains.
cles, i.e.,Therefore, the goal of this paper is a quantitative de-

scription of the 3D adsorption kinetics of interacting sphe-
roidal particles both of elongated (prolate spheroid ) and B(eP v)Å p /p0Å*

DS

e0fv/kTdrvÅ 1/*
DS

fvdrv , [2]
flattened (oblate spheroid ) shape. The theoretical model
used in our work is based on the generalization of the
RSA approach which enables one to perform not only where p0 Å 1 according to assumption (i) and fv Å e0fv/kT

0 1 is the Mayer function of the virtual particle.the Monte Carlo type numerical simulations of adsorption
processes but also to derive analytical expressions valid Obviously, the surface blocking parameter as defined

above depends on positions and orientations of all adsorbedfor low and moderate surface concentrations. Some pre-
liminary results obtained for noninteracting (hard) parti- particles and the virtual particle. In order to determine an

averaged value of B and eliminate the influence of the bound-cles have been presented in (40) .
ary conditions at the perimeter of the simulation plane one
should consider large particle populations or take ensembleTHEORETICAL
averages from many smaller surface elements.

1. General Considerations An explicit analytical calculation of B by evaluating the
double integral defined by Eq. [2] is not feasible, however,We will describe the 3D adsorption of spheroidal particles
because the statistical properties of the irreversible RSA se-in terms of the random sequential adsorption (RSA) model
quences cannot be deduced a priori and the interaction en-whose basic assumptions are:
ergy fv for many-body systems is difficult to evaluate. Exact
calculations of B can only be performed numerically using(i) particle adsorption occurs at a microscopically homo-

geneous interface DS ; i.e., the probability density dp of the Monte Carlo (MC) simulation techniques as discussed
later.choosing a given particle position over the interface is uni-

form and the integral of dp over DS is normalized to unity; However, useful analytical approximations can be derived
for not-too-high surface concentration and short-ranged in-( ii ) the probability density of particle adsorption in the

vicinity of preadsorbed particles is governed by the Boltz- teraction potentials using the density expansion method (29,
33). According to this approach the surface blocking param-mann distribution;

( iii ) after adsorption particle positions and orientations eter can be expressed in terms of a polynomial of N
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350 ADAMCZYK AND WEROŃSKI

FIG. 1. A schematic representation of quasi-3D random sequential adsorption of spheroidal particles at a planar homogeneous interface.

where ka ( êv) is the adsorption rate constant which can beB(eP v , N) Å 1 0 I1(eP v)N / 1
2 I2(eP v)N 2 0 . . . , [3]

interpreted as the reduced initial flux j0 /nb , nb is the bulk
concentration of particles (14), and g (1) is the one-particlewhere the multiple integrals I1 , I2 are given by
orientational distribution function.

It is interesting to mention that the initial flux for spheroi-
dal particles has not been determined theoretically yet. How-I1(eP v) Å 0 **g (1)

0 (eP v) f1v(rv , eP 1 , eP v)drv(deP 1 /2p) [4]
ever, for colloid particles and proteins characterized by a !
1 mm the interception and external force effects can be ne-

I2(eP v) Å ***g (2)
0 (r12 , eP 1 , eP 2 , eP v , )

glected and the diffusion boundary layer becomes much
larger than particle dimensions (14). Then, the initial flux

1 H* [2I1 / f2v(rv , r12 , eP 1 , eP 2 , eP v)]drvJ for spheroids can be estimated from the known results for
spheres by introducing an equivalent diffusion coefficient.

An explicit formulation of Eq. [6] in the general case1 dr12(deP 1 /2p)(deP 2 /2p) , [5]
seems rather cumbersome. However, for many practical situ-
ations one can assume that ka and g (1)

v are independent of
where g (1)

0 and g (2)
0 are the one- and two-particle distribution

the orientation vector êv (as is the case in the absence of
functions (40), f1v Å e0f1v/kT 0 1, f2v Å e0f2v/kT 0 1, f1v is

external force fields orienting particles) . Then, Eq. [6] can
the interaction energy of the virtual particle with a single

be simplified to the form
adsorbed particle and f2v is the interaction energy with a
pair of adsorbed particles.

It should be noted that since DS was normalized to unity, dN

dt
Å kanbBU (N) , [7]

the N value in Eq. [3] can be treated as the surface concentra-
tion of adsorbed particles.

The series expansion Eq. [3] was truncated on the third where BV ( N) Å * B( êv , N)(d êv /2p) is the orientation-aver-
term because aged surface blocking parameter.

Equations [3] and [7] can also be expressed in a more(i) the multiple integrals to be evaluated become vastly
concise dimensionless forminvolved for the forth and higher terms and

(ii) simple analytical expression for the kinetic equation
describing the u vs time dependence can be derived. du

dt
Å B(u) Å 1 0 C1u / C2u

2 / 0(u 3) , [8]

Knowing the surface blocking parameter B for a given
orientation of the virtual particle, one can describe the kinet-

where u Å SgN is the dimensionless concentration of ad-
ics of spheroidal particle adsorption by the integral equation

sorbed particles, Sg is the characteristic cross-section of the
(35, 40)

spheroid and t Å kanbSgt is the dimensionless adsorption
time.

The dimensionless constants C1 and C2 independent of udN

dt
Å * ka (eP v)g (1) (eP v)B(eP v , N)(deP v /2p) , [6]

and the orientation angles are given by the expressions
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351SPHEROID ADSORPTION

FIG. 2. (a) A perspective view (upper part) and the projection (lower part) of the two particle configuration occurring in calculations of the C1

constant ( the adsorbed particle was shadowed). (b) The same as for (a) but for the three particle configuration occurring in calculations of the C2

constant.

due to symmetry the number of independent orientational
C1 Å 0

2
Sgp

3 *
2p

0

da1v *
p /2

0

db1 *
p /2

0

dbv * f1vdrv coordinates is reduced by one.
It is interesting to mention that Eq. [8] can be integrated

analytically which results in the following expression forC2 Å
1

S 2
gp

5 *
2p

0

g (2)
0 da12 *

2p

0

da1v *
p /2

0

db1 *
p /2

0

db2
particle adsorption kinetics (valid when 4C2 /C 2

1 õ 1)

1 *
p /2

0

dbv * dr12 * [2I1 / f2v]drv , [9]

u(t) Å u1
1 0 exp(0pC1t)

1 0 u1

u2

exp(0pC1t)
, [10]

where

f1 Å e0fU 1(a1v,b1,bv,rv) 0 1

f Å e0fU 2(a12,a1v,b1,b2,bv,r12,rv) 0 1
where

fU 1 Å f1 /kT is the dimensionless interaction energy of the
virtual particle with a single adsorbed particle, fU 2 Å f2 /kT
is the dimensionless interaction energy of the virtual particle

u1 Å
C1

2C2

[1 0 p] ; u2 Å
C1

2C2

[1 / p]with a pair of adsorbed particles and g (2)
0 Å e0fU 1v is the

zero-order pair correlation function (Boltzmann distribu-
tion). The angles a12 , a1v , b1 , b2 , bv derived from the p Å S1 0 4C2

C 2
1
D1/2

.
orientation vectors ê1 , ê2 , êv are defined in Fig. 2. Note that
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352 ADAMCZYK AND WEROŃSKI

decreased for small distances between spheroids (Hm ! 1)When, 4C2 /C 2
1 ú 1 the solution becomes

and thick double-layers when ka õ 1. This is no serious
limitation, however, because at smaller distances the interac-

u(t) Å 2tg((1/2)C1pt)
C1p[1 / (1/p) tg((1/2)C1pt)]

; tion energy assumes very large positive values and the Boltz-
mann factor tends to zero independently of the exact value
of the energy.p Å S4C2

C 2
1

0 1D1/2

. [11]
It should also be mentioned that both the minimum separa-

tion distance hm and the principal radii of curvature R1 and
R2 depend in a complicated manner on the orientation of theHowever, evaluation of the multiple integrals occurring
spheroid pair and can be determined numerically only usingin Eq. [9] and calculation of the C1 /C2 constants needed for
the involved iterative procedure described elsewhere (39).approximation of particle adsorption kinetics can only be

achieved numerically. This requires additionally that the in-
THE NUMERICAL METHODSteraction energies fU 1 and fU 2 are known for arbitrary config-

uration of clusters composed of two and three particles. The
1. Calculations of the Multiple Integralsapproximate method of calculating the electrostatic interac-

tion energies of spheroidal particles is discussed in the next The C1 and C2 constants which have large significance
section. for estimating surface blocking effects for low and moderate

coverages were calculated from the defining integrals Eq.
2. Calculating the Interaction Energy [9] by using the Monte Carlo integration method (42) based

on the relationshipDue to the lack of exact solutions the electrostatic interac-
tion energy of spheroidal particles was approximated using
the usual additivity principle with the pair interactions calcu- *

DV

f dV Å » f …DV, [13]
lated according to the equivalent sphere approach (ESA)
described in some detail elsewhere (39, 41). The essence of

where DV is the domain of integration (of arbitrary dimen-this method consist in replacing the interaction of arbitrarily
sion) andshaped convex bodies by interactions of two dissimilar

spheres having the equivalent radii R1 and R2 . These are
assumed equal the mean radii of curvature of the two particle

» f … Å 1
Nt

∑ fnevaluated at points of minimum separation.
The advantage of the ESA consist in the fact that many

known numerical and analytical results concerning sphere is the averaged value of the function f within DV determined
interactions (41) can directly be transferred to spheroidal from Nt evaluations of f for points chosen at random within
particles. Thus, for example, the commonly used expression the multidimensional domain DV . Usually, for obtaining a
derived for two spheres by accepting the linear superposition four digit accuracy about 108/1010 evaluations of the integral
approach (LSA) can be generalized for spheroidal particles of Eq. [9] were needed. Obviously, every evaluation re-
to the form quired the determination of the interaction energy for a parti-

cle pair ( in the case of the C1 constant) and for a cluster
composed of three particles ( in the case of the C3 constant) .

f Å e
(kT)2

e 2 Y 2 2R1R2

R1 / R2 / hm

ekhm

As mentioned, the pairwise energy additivity principle was
assumed with the pair energy calculated from Eq. [12].

Å f0
2RU 1RU 2

RU 1 / RU 2 / Hm

e0kaHm , [12]
2. The MC-RSA Simulation Algorithm

In the general case of arbitrary surface concentration of
where e is the dielectric constant, e is the elementary charge, spheroidal particles the blocking parameter B(u) and adsorp-
Y is the dimensionless functions of ka and the electrokinetic tion kinetics were calculated according to the algorithm be-
potential of the particle zp which for thin double-layers, i.e., ing a generalization of the one previously used for the 2D
when ka @ 1 becomes simply 4th (zpe /4kT ) , k01 Å Le Å adsorption (32–33, 39).
(ekT /8pe 2I) is the Debye screening length, I is the ionic The simulation scheme consisted from three main calcula-
strength, a is the characteristic dimension of the spheroid tion modules repeated in a loop:
( longer semiaxis) , RV 1 Å R1 /a , RV 2 Å R2 /a are the dimen-
sionless mean radii of curvature of the two spheroids near ( i) The virtual (adsorbing) spheroidal particle of a parti-

cle was generated having the coordinates (xv , yv) and thethe point of minimum separation, Hm Å hm/a is the dimen-
sionless minimum distance between particle surfaces. orientation av , bv measured relative to a space-fixed coordi-

nate system (the zv coordinate was unequivocally definedAs discussed in (41) the accuracy of Eq. [12] is usually
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353SPHEROID ADSORPTION

by bv) . The size of the square simulation plane DS was
normalized to unity and the relative cross-section surface
area of the virtual particle Sg with respect to DS was usually
2 1 1004 . The periodic boundary conditions were applied
at the perimeter of the simulation plane.

( ii ) Then, the overlapping test was performed by scan-
ning the adsorbing particle vicinity and using the Veillard-
Baron (43) function. If overlapping occurred then step (i)
was repeated, otherwise the minimum surface to surface
distances between the virtual and previously adsorbed parti-
cles were determined by the procedure described in (39).
Knowing the distances the net interaction energy fU was
calculated as a sum of pair interactions using Eq. [12].

( iii ) Finally, the virtual particle was adsorbed with the
probability pB given by the Boltzmann relationship. This
was done by generating additional random number pr with
uniform distribution within the interval 0/1. If pr õ pB then
adsorption took place, if not, the simulation loop was re-
peated.

Since the RSA simulations were very time consuming
(especially at higher surface concentrations) optimization of
the algorithm was a crucial factor. As previously (32–33,

FIG. 3. The dependence of the C1 constant on the ka (LV e) parameter39) we introduced a three-dimensional subsidiary grid for
for interacting prolate spheroids (A Å 0.2) . The filled triangles denote theenhancing the scanning efficiency of the adsorbing particle
numerical results calculated for the f0 parameter equal 1000 kT and theenvironment and used the efficient iterative method for de-
filled circles for f0 equal 100 kT. The solid lines denote the best fits

termining the minimum surface to surface separation dis- calculated from Eq. [15]. The (-. .- ) lines represent the results obtained
tances. for the side-on (2D) adsorption.

The blocking parameter B was calculated using the
method described by Schaaf and Talbot (27–28). According ratio A Å 0.2 are shown in Figs. 3 and 4, respectively. We
to their procedure the RSA process was continued until a choose this value of A which is characteristic for some pro-
desired surface concentration was attained. Then, a large tein molecules often used in model adsorption studies, e.g.,
number of trials Nt of placing a new particle was performed fibrinogen (4–6). Although in these adsorption studies the
by keeping the surface concentration constant. The number ionic strength value is rather high, i.e., 0.15 M due to the
of successful attempts (would be adsorption events) was small size of this protein (having the length 2a about 450
found to be Nsucc . Taking advantage of the general large Å) the ka parameter assumed the value of about 28.
number probability law the blocking parameter B(u) was Therefore, in our calculations, whose results are shown
calculated as the limit of the ratio Nsucc /Nt for Nt r ` . in Fig. 3, we were primarily interested in determining theo-

On the other hand, particle adsorption kinetics was simu- retically the role of the ka parameter in nonspherical particle
lated directly by monitoring the number of successful ad- adsorption.
sorption events as a function of the dimensionless time t The points in Fig. 3 represent the results of numerical
defined as (14) evaluation of the integral Eq. [9] performed for a broad

range of ka and two values of f0 , i.e., 102 and 103 kT,
respectively. For comparison, the previously obtained resultst Å t

tch

Å Natt

Nch

Å Natt

(1/Sg)
, [14]

for the side-on adsorption are also plotted in Fig. 3. As can
be seen, the dependence of C1 on ka can well be described

where Natt is the overall number of attempts at placing parti- by the following interpolation polynomial of ka01 Å LV e (cf.
cles (repetitions of the simulation loop) and Nch is the char- solid lines in Fig. 3)
acteristic number of particles.

C1 Å C`
1 / c1Le / c2Le2 , [15]

RESULTS OF CALCULATIONS AND DISCUSSION

where C`
1 Å 2.314 is the value of the C1 characteristic for

1. Calculations of the C1, C2 Constants
noninteracting (hard) particles and c1 , c2 dimensionless con-
stants equal to 32.5 and 11.63 for f0 Å 100 kT, and 53.62The results of the numerical calculations of the C1 constant

for prolate and oblate spheroids characterized by the aspect and 62.67 for f0 Å 1000 kT.
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spheroids only, characterized by AÅ 0.2 (see Fig. 5) . Analo-
gously to the C1 constant, the value of C2 is considerably
increased for lower ka values. It is also interesting to observe
that the numerical results shown in Fig. 5 can well be de-
scribed, especially for f0 Å 100 kT, by the geometrical
scaling law formulated previously for the side-on adsorption
(39), i.e.,

C2 Å 0.2965C 2
1 . [16]

Equations [15] – [16] can be used for a convenient estima-
tion of the C10 C2 constants for interacting prolate spheroids
with a precision of a few percent. Additionally, by substitut-
ing these C1 0 C2 values into Eqs. [10] – [11] one can deter-
mine explicitely particle adsorption kinetics in the limit of
low and moderate coverages with an accuracy sufficient for
practical applications. However, the numerical evaluation of
these constants seems rather tedious. Therefore, we present
below the effective hard-particle concept which can be ex-
ploited for an efficient, analytical estimation of the C1 0 C2

constants and in consequence of the blocking parameter and
adsorption kinetics for low and moderate surface concentra-
tions.FIG. 4. The same as described in the legend for Fig. 3 but the oblate

spheroids characterized by A Å 0.2. The best fits were calculated from the
Eq. [15]. The (-. .- ) lines denote the side-on (2D) adsorption (spheres) . 2. The Effective Hard-Particle Approximation

The effective hard-particle concept was applied originally
by Barker and Henderson (44) to describe the equation ofThe comparison between the side-on and the 3D (unori-

ented) adsorption suggest that in both cases the effect of the
electrostatic interactions is very pronounced, especially for
Le ú 0.1 (ka õ 10) although the increase in C1 for Le ú
0.1 is steeper for the 3D adsorption. One can estimate that
for the conditions characteristic for fibrinogen adsorption
(ka Å 28) the C1 constant becomes almost 50% larger than
that for the hard particle case. Since C1 can be interpreted
as the normalized surface area blocked by one molecule (in
the limit of low surface coverages) one can deduce from the
results shown in Fig. 3 that the blocking effects for inter-
acting particles of elongated shape are considerably more
pronounced than for the hard particles.

Similar results were obtained for oblate spheroids (cf. Fig.
4) which for A ! 1 resemble circular disks (40). In this
case however, the increase in the blocking area for the side-
on and 3D orientations seem to be very similar. It was found
that also in this case the numerical results can well be inter-
polated by Eq. [15] with the coefficients

C`
1 Å 2.134

c1 Å 13.24, c2 Å 06.10 for f0 Å 100 kT and

c1 Å 21.4, c2 Å 01.16 for f0 Å 1000 kT.
FIG. 5. The dependence of the C2 constant on the ka parameter for

interacting prolate spheroids (A Å 0.2); the filled triangles denote the
The calculations of the C2 constant according to the defin- numerical results calculated from Eq. [9] for f0 Å 1000 kT and the filled

ing integral equation [9] were found to be considerably more circles for f0 Å 100 kT. The solid lines denote the analytical results calcu-
lated from Eq. [16].time consuming. Therefore, we present results for prolate
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355SPHEROID ADSORPTION

state of simple fluids of spherically shaped molecules. Ac- In the case of unoriented adsorption of spheroidal parti-
cles, one can show by exploiting the hard-particle resultscording to this approach, the interacting particles are treated

as hard (noninteracting) ones having the equivalent dimen- presented in our previous work (39) that C1 for prolate
spheroids assumes the formsion (radius) a* increased over the geometrical dimension

by h*, i.e., the effective interaction range. Thus, the effective
cross section of a spherical particle becomes simply S* Å C1Å (2.07/ 0.811 A*/ 2.37 A*20 1.25 A*3) SU *g , [22]
p(a / h*)2 . Consequently for spherical particles the C1

constant is connected with h* by the parabolic dependence where A* Å (A / H) / (1 / H) and SV g* Å (1 / H*)(1 /
H*/A) . Equation [22] can be transformed into the implicit
fourth-order polynomial of H* which can be inverted analyt-C1 Å

S*
Sg

Å 4S1 / h*
a D

2

, [17]
ically (this involves the solution of a fourth-order algebraic
equation) giving an explicit functional dependence of H*
on C1 . Since this expression was found to be very compli-where Sg Å pa 2 .
cated, it is not reported here.This can easily be inverted giving for the dimensionless

On the other hand, for oblate spheroids the interpolatingeffective interaction range h*/a the simple expression (39)
expression for C1 becomes

H* Å h*
a
Å 1

2

√
C1 0 1, [18] C1 Å (1.59 / 2.80 A* 0 0.388 A*2) SU g , [23]

where in this case SV g* Å (1 / H*)2 . Equation [23] can bewhere the C1 constant is determined numerically by evaluat-
evaluated and easily inverted (this involves a solution of aing the integral Eq. [9] which for spherical particles simpli-
quadratic equation only) giving for H* the expression fullyfies to the form (14)
analogous to Eq. [21], i.e.,

C1 Å 2 *
`

0

(1 0 e0fU 1 )r
V
dr

V
. [19]

H* Å 5.98 / 2.02 A

8

fU 1 is the interaction energy of the pair of spheres and r
V

is
1 F

√
1 / 16

(5.98 / 2.02 A)2 (C1 0 C`
1 ) 0 1G ,the dimensionless distance between their centers.

In the side-on adsorption of spheroidal particles (ellip-
ses) , the dependence of C1 on H* (analogous to Eq. [17]) [24]
becomes more involved. This is because the shape of the
‘‘parallel’’ figure obtained by increasing the size of an ellipse where C`

1 Å 1.59 / 2.80 A 0 0.388 A 2 is the C1 constant
uniformly by the increment h* deviates from the original for hard particles.
elliptic shape and its surface area can only be expressed via The results obtained for prolate spheroids using the equiv-
the complete elliptic integral of the second kind (45–46). alent hard-particle concept are plotted in Fig. 6 in the form
However, by applying an interpolation procedure analogous of the dependence of H* on the ka (Le) parameter. As can
to that expressed by Eq. [15] one can show that C1 becomes be observed the numerical results (represented by points)
also a parabolic function of H* obtained for various A values (and for f0 Å 1000 kT) practi-

cally coincide for ka ú 10 and moreover they seem to lie
on a one straight line. This behavior confirms, therefore, theC1 Å

4(p 2 0 4)
p 2 / 8

p 2 SA / 1
AD validity of the equivalent hard-particle concept, at least for

this range of ka values.
Very similar results were obtained for the oblate spheroids/ 4S1 / 1

ADH* / 4
A

H*2

as well.
It should be mentioned that determination of the effectiveÅ C`

1 / c1H* / c2H*2. [20]
interaction range via the above-mentioned numerical method
seems rather cumbersome for practical purposes. However,

This can easily be inverted giving for H* the expression
the character of the results shown in Fig. 6 suggests that
they can be well-fitted by a linear dependence, i.e.,

H*Å A/ 1
2 F

√
1/ A

(A/ 1)2 (C10 C`
1 ) 0 1G . [21]

H* Å j(ka)01 Å j LU e. [25]

The C1 constant can again be calculated by a numerical integra- The estimation of the proportionality constant can be
achieved in analogy to previous results for the side-on ad-tion of Eq. [9] when substituting b1 Å b2 Å bv Å p/2.
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and the zeta potential of the particle and the interface. How-
ever, the estimation of the range of validity of these approxi-
mate analytical expressions can only be achieved by compar-
ison with exact numerical simulation of B(u) and the kinetic
runs.

RESULTS OF NUMERICAL SIMULATIONS

1. Calculations of B(u)

Using the above simulation scheme we calculated the de-
pendence of the blocking parameter B on u both for prolate
and oblate spheroids characterized by various values of the
effective interaction range H* defined above. Since the case
of hard spheroids (H* Å 0) has not been reported previously
in the literature we have included them in our calculation
scheme.

The results for hard prolate and oblate spheroids are
shown in Figs. 7a and 7b, respectively. The calculations
were performed for A Å 0.5, 0.2 and 0.1 (for comparison
the case of spheres A Å 1 was also included). One can
see in Figs. 7a and 7b that with decreasing A the blocking
parameter B is increased. Also, the limiting ‘‘jamming’’ con-

FIG. 6. The dependence of the effective interaction range H* on the centrations u` (for which B Å 0) are considerably increased
ka (LV e) parameter. The points represent exact numerical results for prolate for smaller A . This is so because under the conditions of
spheroids derived for f0 Å 1000 kT: (s) A Å 1 (spheres); (j) A Å 0.5;

the 3D adsorption additional particles are adsorbing under(n) A Å 0.2; the solid lines show the analytical approximation calculated
orientations close to perpendicular so they need muchfrom the equation H* Å 1

2 LV e ln (f0 /fch ) .
smaller accessible surface area than for the side-on adsorp-
tion. This effect is especially well pronounced for A õ 0.2
both for prolate and oblate spheroids. As shown in (40) thesorption (39) using Eq. [12] and postulating that for H Å
jamming concentrations in the limit of A r 0 become in-H* the pair interaction energy attains the characteristic value
versely proportional to this parameter and can be describedfch . In this way (by neglecting also the small variations of
for prolate spheroids by the expressionthe prexponential term) one receives the simple expression

u` Å 0.304 0 0.1234 A / 0.365
A

. [27]j Å 1
2

lnS fU 0

fU ch
D . [26]

On the other hand, for oblate spheroids an analogous expres-Note that j is independent of the A parameter.
sion assumes the formAs can be seen in Fig. 6 the exact numerical results can

indeed be described by the linear dependence Eq. [25] for
a broad range of LV e values. The fch parameter was found u` Å 0.768 0 0.473 A / 0.251

A
. [28]

close to a kT unity in accordance with physical expectations
(being exactly 1.02 kT for prolate and 0.862 kT for oblate
spheroids) . This corresponds to j Å 3.4 and 3.5, respec- It should also be noted that the limiting low-coverage

expansion Eq. [8] describes well the exact numerical calcu-tively. As one can seen from this estimation the effective
interaction range for spheroidal particle adsorption proved lations for a considerable range of u values, especially for

the oblate spheroids.to be significantly larger than the double layer thickness.
The results shown in Fig. 6 suggest, therefore, that the The results obtained for interacting particles (A Å 0.2, f0

Å 100 kT) are shown for prolate spheroids in Fig. 8. As oneequivalent hard particle concept can be successfully used
for approximating the blocking effects and consequently ad- can notice, similar to side-on adsorption (39), the increase in

the H* parameter (which according to Eq. [25] is propor-sorption kinetics of interacting spheroidal particles. By using
Eqs. [23] – [26] in combination with Eqs. [8] , [10], and tional to LV e) results in a significant decrease of B for the

same surface coverage u; i.e., the blocking effects become[11] one can express both B an u vs t for not-too-high
surface concentrations in terms of the two experimentally more pronounced when H* increases.

It is also interesting to observe that the dependence of Baccessible parameters the ionic strength of the suspension
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FIG. 7. (a) The dependence of the surface blocking parameter B ( the ASF) on the dimensionless surface concentration u for hard prolate spheroids;
the points denote the results of numerical simulations performed for: 1. A Å 0.1; 2. A Å 0.2; 3. A Å 0.5; 4. A Å 1 (spheres) . The broken lines lines
represent the low coverage analytical results calculated from Eq. [8] . (b) Same as for (a) but for oblate spheroids: 1. A Å 0.1; 2. A Å 0.2; 3. A Å 0.5;
4. A Å 1 (spheres) . The broken lines lines represent the low coverage analytical results calculated from Eq. [8] .

on u for interacting spheroidal particles becomes for some to compensation of the two contradictory effects, i.e., the
unoriented adsorption and electrostatic repulsion, adsorptionlimiting H* value almost identical with the hard-sphere case.

This occurs, for example, for prolate spheroids at H* Å processes of interacting spheroidal particles may apparently
become very similar, (under a certain combination of the0.15 and for oblate spheroids for H* Å 0.25. Thus, due
parameters A , ka , and f0) to adsorption of hard particles
of spherical shape.

The natural coordinate system used in Figs. 7–8, i.e.,
B(u) vs u, is useful for presenting the data for low surface
concentrations only. For higher coverages the differences
between the curves calculated for various A are difficult to
observe. This should be more clearly visible when compar-
ing the kinetic curves as discussed below.

2. Kinetics of Particle Adsorption

Some characteristic results (obtained using the above-
described RSA simulation procedure ) which illustrate the
influence of the effective interaction range H* on adsorp-
tion kinetics of prolate spheroids (A Å 0.2, f0 Å 100 kT)
are shown in Fig. 9a for the dimensionless adsorption time
t õ 5.

As can be observed in Fig. 9a the increase in the H*
parameter resulted in a considerable decrease in particle ad-
sorption kinetics. This is why for H* Å 0.15 the kinetic
curve characteristic for elongated spheroids is very similar
to the curve describing hard sphere adsorption.

FIG. 8. The dependence of B on u for interacting prolate spheroids (A Å
It should also be noted that the limiting analytical solu-0.2); the points denote the numerical simulations performed for: 1. H* Å 0

tions Eqs. [10] – [11] describe for t õ 2 reasonably well(hard particles); 2. H* Å 0.05; 3. H* Å 0.1; 4. H* Å 0.15; 5. H* Å 0.25.
The continuous lines represent the analytical results calculated from Eq. [8]. the exact numerical results, especially for smaller H* values.
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FIG. 9. Adsorption kinetics of interacting prolate spheroids (0.2) . (a) The dependence of u on t. The points denote numerical simulations performed
for: 1. H* Å 0 (hard particles) ; 2. H* Å 0.05; 3. H* Å 0.1; 4. H* Å 0.15; 5. H* Å 0.25. The broken lines represent the analytical approximation
calculated from Eq. [11]. The empty symbols denote the results obtained for hard spherical particles. (b) The dependence of u on t01/4 simulated
numerically for: 1. H* Å 0 (hard particles) ; 2. H* Å 0.05; 3. H* Å 0.1; 4. H* Å 0.15; 5. H* Å 0.25. The broken lines show the analytical results
calculated from Eq. [29].

However, due to the considerable decrease in particle ad- tion times exceeding 104 are very difficult to attain in usual
experiments involving proteins and colloids [14]. Moreover,sorption rate for t ú 2 (which apparently may suggest that

saturation values of u are approached) the kinetic curves for such extreme times the RSA assumptions are violated
as mentioned later on.cannot be effectively presented when using the natural coor-

dinate system u vs t. The previous theoretical results con- Instead, we tried to fit the linear regimes by exploiting
again the effective hard particle concept for calculating thecerning the asymptotic adsorption kinetics of hard spheroids

in 3D indicate that the following transformation should be jamming values umx of interacting spheroids from the relation
used previously for the side-on adsorption (39)used to express adsorption kinetics for long times

umx 0 u Å Kt01/4 [29]
umx Å u`

0C1

C1(H*)
. [30]

where K is the proportionality constant.
This suggests that the use of the u vs t01/4 coordinate

Using Eq. [22] one can formulate Eq. [30] explicitly as
system should be more appropriate for t @ 1. This transfor-
mation has an additional advantage of compressing the infi-
nite t domain into a finite one. Such plots derived from umx Å

(2.07 / 0.811 A / 2.37 A 2 0 1.25 A 3)
(2.07 / 0.811 A* / 2.37 A*2 0 1.25 A*3)

1 (1 / H*)(1 / (H*/A))

[31]
numerical simulations performed for various H* and A Å
0.2 prolate are shown in Fig. 9b. As can be observed, by
using this transformation, the kinetic data can indeed be
expressed as linear dependencies for a broad range of t for with A* Å (A / H*)/(1 / H*), H* Å 1/2ka ln(f0 /fch ) .

Then, substituting umx into Eq. [29] one obtains the linearboth hard and interacting particles.
Some small positive deviations from the linearity occurred fitting functions.

It can be seen in Fig. 9b that this approach gives ratherat extremely long times (t01/4 õ 0.1 which corresponds to
t ú 104) in accordance with previous results for the side- satisfactory results for A Å 0.2 although a definite tendency

to overestimate the numerical date is clearly visible. Thison adsorption (39). This effect can in principle be accounted
for by analyzing the target size and topology for the asymp- is probably due to the orientation distribution anisotropy

expected for surface concentrations close to the jamming.totic regime close to jamming. We did not attempt to specu-
late further on this matter because the dimensionless adsorp- Since for this adsorption regime the spheroids can only ad-
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It should be mentioned that the RSA model discussed in
our paper, although very useful due to its simplicity, has
certain limitations which are expected to play a role for
higher surface concentrations. They originate from neglect-
ing the true 3D distribution of interaction energy between
the virtual and preadsorbed particles and its translational and
rotary Brownian motion. A proper consideration of these
effects could only be possible by using the Brownian dynam-
ics simulation method (14). At the present time, however,
such simulations for systems of nonspherical particles seem
prohibitive.

The success of the RSA approach in the case of spherical
particles (14, 41) would suggest that also for nonspherical
particles our theoretical results should prove useful for non-
spherical particles as well. However, no direct quantitative
verification of the hypothesis has been performed.

CONCLUDING REMARKS

The theoretical analysis based on the RSA model showed
that the surface-blocking parameter for interacting spheroi-
dal particles in 3D can be approximated by the polynomial

FIG. 10. The dependence of the normalized maximum surface concen- expression Eq. [8] valid for low and moderate surface con-
tration umx /u` on the ka parameter. The points denote the results of numeri- centrations u.
cal simulation performed for interacting prolate spheroids (f0 Å 100 kT): By adopting the effective hard-particle concept instead of
1. A Å 1 (spheres); 2. A Å 0.5; 3. A Å 0.2. The broken lines denote the

evaluating these integrals numerically, one can formulate theanalytical approximations calculated from Eq. [31].
analytical expressions for C1 in terms of H* (cf Eqs. [22] –
[26]) . The effective interaction range H* can be approxi-sorb under an orientation close to perpendicular the interac-
mated bytion energy is increased. This results in turn in an decrease

in adsorption kinetics below the value calculated from Eq.
[27] formulated by assuming a uniform probability of parti- H* Å (ka)01 1

2
lnS fU 0

fU ch
D Å LU e j.

cle orientations.
The maximum surface coverages stemming from Eq. [31]

are plotted in Fig. 10 in the reduced form, i.e., as the depen- The dimensionless proportionality constant j is on the order
dence of umx /u` on the ka parameter. Using such a coordinate 2–4 for particle sizes about 0.1 mm and zeta potentials about
system is advantageous because the effect of the electrostatic 50 mV.
interactions (ka value) on the maximum surface coverages The exact numerical simulations performed according to
of spheroidal particles can clearly be visible. It should also the MC-RSA algorithm confirmed the validity of the above
be mentioned that the umx values are of a primary interest in analytical expressions for predicting particle adsorption ki-
protein adsorption studies (3–6, 16–18). As can be seen in netics for t õ 2.
Fig. 10 the approximate analytical estimations calculated It was also found that the effective hard particle concept
from Eq. [31] are in good agreement with the exact numeri- can be used for higher surface concentrations as well with
cal simulations for a broad range of ka values, including the the blocking parameter expressed by the power law depen-
case characteristic for protein adsorption. Thus, the results dence Eq. [29] analogous to the hard particle case.
shown in Fig. 10 seem useful since they indicate that the These analytical results and the extensive numerical simu-
concept of the effective interaction range is valid for surface lations of adsorption kinetics suggest that the surface
coverages close to jamming. This provides one with an effi- blocking effects become particularly pronounced for elon-
cient method of estimating via Eq. [31] the jamming cover- gated particles when A õ 0.5.
ages for interacting particles of nonspherical shape.

It is interesting to observe that by substituting Eq. [29] REFERENCES
into Eq. [8] and differentiating one can derive for B(u) the
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2. Bos, R., van der Mei, H. C., Meinders, J. M., and Busscher, H. J., J.B(u) Å 1
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AID JCIS 4832 / 6g24$$$266 04-30-97 16:29:44 coidal



360 ADAMCZYK AND WEROŃSKI
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(1982).face Sci. 177, 613 (1996).

24. Gibbons, R. J., Moreno, E. C., and Etherden, I., Infect. Immun. 39, 2804. Fowler, E., and Erickson, H. P., J. Mol. Biol. 134, 241 (1979).
(1983).5. Schaaf, P., Dejardin, Ph., and Schmitt, A., Langmuir 3, 1128, 1131

25. Moncla, B. J., Halfpap, L., and Birdsell, D. C., J. Gen. Microbiol. 131,(1988).
2619 (1985).6. Schaaf, P., and Dejardin, Ph., Colloids Surf. 31, 89 (1988).

26. Hinrichsen, E. L., Feder, J., and Jossang, T., J. Stat. Phys. 44, 7937. Sugimoto, T., Adv. Colloid Interface Sci. 28, 65 (1987).
(1986).8. Peters, J. J., and Dezelic, G., J. Colloid Interface Sci. 50, 296 (1975).

27. Schaaf, P., and Talbot, J., J. Chem. Phys. 91, 4401 (1989).9. Ocana, M., Andres, M., Martinez, M., Serna, C. J., and Matijevic, E.,
28. Schaaf, P., and Talbot, J., Phys. Rev. Lett. 62, 175 (1989).J. Colloid Interface Sci. 163, 262 (1994).
29. Evans, J. W., Rev. Modern Phys. 65, 1281 (1993).10. Ho, C. C., Keller, A., Odell, J. A., and Otewill, R. H., Colloid Polym.
30. Widom, B., J. Chem. Phys. 44, 3888 (1966).Sci. 271, 469 (1993).
31. Widom, B., Chem. Phys. 58, 4043 (1973).11. Wirenga, A. M., and Philipse, A. P., J. Colloid Interface Sci. 180, 360
32. Adamczyk, Z., Zembala, M., Siwek, B., and Warszyński, P., J. Colloid(1996).
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