
Journal of Colloid and Interface Science 247, 327–341 (2002)
doi:10.1006/jcis.2001.8128, available online at http://www.idealibrary.com on

Prediction and Measurement of the Interparticle Depletion
Interaction Next to a Flat Wall

Martin Piech,∗ Pawe �l Weronski,∗ Xin Wu,† and John Y. Walz∗,1

∗Yale University, Department of Chemical Engineering, P.O. Box 208286, New Haven, Connecticut 06520-8286;
and †Syncrude Canada Ltd., Edmonton Research Centre, Edmonton, Alberta T6N 1H4, Canada

Received July 31, 2001; accepted November 24, 2001

A theoretical and experimental study was performed to investi-
gate the depletion interaction between two colloidal particles next to
a solid wall in a solution of nonadsorbing macromolecules. By cal-
culating the change in free volume available to the macromolecules
upon approach of the two particles, a relatively simple expression
was developed for the interparticle depletion attraction in hard
sphere systems as a function of the particle–particle and particle–
plate spacing. Perhaps the most useful result obtained from this
analysis was that the wall has no effect whenever the ratio of the
particle radius to the macromolecule radius is greater than four. (In
charged systems, this ratio would apply to the effective particle and
macromolecule sizes.) A series of experiments was then performed
in which the hydrodynamic force balance (HFB) apparatus was
used to measure the shear force needed to separate a colloidal dou-
blet consisting of two particles trapped in a secondary energy well
formed by a repulsive electrostatic force and an attractive depletion
force. The macromolecules used here were small, nanometer-sized
spheres of either silica or polystyrene. Agreement between the mea-
sured separation forces and those predicted using the force balance
model of J. Y. Walz and A. Sharma (J. Colloid Interface Sci. 168, 485
(1994)) was within a factor of 1.3 using no adjustable parameters
and accounting for polydispersity and uncertainty in the macro-
molecule size. It is shown that this remaining discrepancy could be
caused by the Brownian (stochastic) nature of the doublet breakup
process. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Ever since the pioneering work of Asakura and Oosawa in the
1950s (1, 2), the depletion interaction between colloidal particles
immersed in a solution of nonadsorbing polymers has been the
subject of a substantial amount of research. Numerous groups
have demonstrated, both experimentally and computationally,
that even at relatively low polymer concentrations (i.e., order
1% wt), the depletion attraction can be significant enough to
introduce phase transitions in an otherwise stable colloidal dis-
persion (3–6). In addition, several novel and useful applications
of the depletion interaction have been demonstrated. For exam-
1 To whom correspondence should be addressed.
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ple, Promislow (7) showed that the depletion attraction produced
by ionic micelles could be used to selectively separate different
size fractions of oil-in-water emulsion droplets. Zukoski and
coworkers have shown that nonadsorbing poly(ethylene glycol)
can induce crystallization and/or separation of protein solutions
(8–10). Finally, nonadsorbing polysaccharides are used as thick-
ening agents in milk products, where the fundamental mecha-
nism is believed to be a depletion attraction between casein
micelles arising from the presence of the polysaccharides (11).

Another area in which depletion interactions may prove useful
is in patterning particles next to an interface. Such a use of
small, nonadsorbing particles to manipulate larger colloids in
two-dimensional space next to a wall was demonstrated in a
series of experiments by Yodh and coworkers (12–14). These
authors found that the larger particles are pushed away from
the edge of a downward step yet into the corner of a vertical
rise (i.e., a wall meeting a floor). Each of these results could
be explained using the concept that the particle will move in the
direction that maximizes the free volume available to the smaller,
nonadsorbing species. Dinsmore and Yodh (15) also found that
the higher concentrations near vertical corners caused particle
crystallites to form in these areas prior to forming either along
the flat wall or in the bulk.

Before such a method can be exploited, however, a better
understanding of the depletion interaction between two parti-
cles next to a wall needs to be developed. This paper presents a
theoretical and experimental study of the interparticle depletion
interaction between two spherical particles next to a flat, solid
surface. In the theory section, an analytical equation is developed
for predicting how the bulk interparticle depletion interaction is
modified by the presence of the wall. Next, a series of exper-
iments is presented in which the hydrodynamic force balance
(HFB) technique was used to measure the maximum attractive
force between two charged particles very close to a solid plate
in a solution of nonadsorbing charged nanospheres. Because of
the relative sizes of the particles and nanospheres, the depletion
interaction between the two particles is predicted to be unaf-
fected by the wall under the specific experimental conditions.
Comparisons between the measured forces and those predicted
using the force balance approach originally developed by Walz
and Sharma (16) are also given.
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THEORY

The equation for the depletion interaction between two col-
loidal particles is typically derived in several different ways.
For the present analysis, the procedure that works best is that
considering the change in excluded volume when two particles
approach each other, which is the method originally used by
Asakura and Oosawa (1, 2).

At low concentrations, the net interaction force between
two colloidal particles immersed in a solution of nonadsorbing
macromolecules (see Fig. 1) will be given by (1)

F = kT N
∂ ln Q

∂h
, [1]

where

Q =
∫

x
exp

[
− w(x)

kT

]
dx. [2]

Here kT is thermal energy, N is the total number of macro-
molecules in the system, h is the gap width between the two
particles, and w(x) is the free energy of a macromolecule lo-
cated at position x. The integral in Eq. [2] is over the entire
system volume. For the case of purely hard particles and macro-
molecules (i.e., only hard wall interactions), Q will be given
by the total free volume available to the macromolecules and
Eq. [1] can be written as

F = kT (N/V free)
∂Vfree

∂h
. [3]

When the volume fraction of particles and macromolecules is
relatively small, the term N/Vfree will be approximately equal
to the bulk number density of macromolecules, ρ∞. Since the

FIG. 1. This schematic shows the origin of the depletion interaction be-
tweeen two particles of radius R in the bulk. Each particle excludes macro-
molecules of radius a, from a spherical volume of radius R + a. When these

exclusion volumes overlap, the total free volume available to the macromolecules
is increased, which is energetically favorable.
T AL.

total volume of the system is assumed fixed, the depletion force
can be calculated as

F = −kTρ∞
∂Vexcl

∂h
, [4]

where Vexcl is the volume of the system excluded from the macro-
molecules (Vexcl = Vtotal − Vfree). Here, a negative value of the
force implies an attraction between the particles. The depletion
attraction arises when the total excluded volume of the system
decreases with decreasing gap width, which is energetically fa-
vorable in a purely hard sphere system.

Consider first the case of two spherical particles of radius
R, separated by gap width h, immersed in a solution of hard,
spherical macromolecules of radius a (see Fig. 1). Each isolated
particle excludes a spherical volume of radius (R + a) from the
macromolecules. When the particles approach sufficiently close,
however, these two excluded volumes overlap by the volume of
the shaded region in this figure, V overlap

particle–particle, and the total ex-
cluded volume of the system actually decreases by this amount.
The depletion force can now be calculated as

Fparticle–particle = +kTρ∞
∂
(
V overlap

particle–particle

)
∂h

. [5]

Through simple geometry, the volume of this overlap region can
be shown to equal

V overlap
particle–particle =

{
2
3π

(
a − h

2

)2(
3R + 2a + h

2

)
for h < 2a

0 for h ≥ 2a.

[6]

Substituting Eq. [6] into Eq. [5] and differentiating with respect
to h yields

Fparticle–particle(h)

ρ∞kT πa R
=

{−(
2 + a

R − h
a − h2

4a R

)
for 0 ≤ h < 2a

0 for h ≥ 2a,

[7]

which is the classical Asakura and Oosawa expression for the
depletion force between two spherical particles (1).

A similar approach can be used to calculate the depletion
interaction between a single particle and a flat plate, shown in
Fig. 2. Now the depletion force will be given by

Fparticle–plate = +kTρ∞
∂
(
V overlap

particle–plate

)
∂h′ , [8]

where h′ is the particle–plate gap width and V overlap
particle–plate (the

shaded region in Fig. 2) is given by

V overlap
particle–plate =

{
π
3 (2a − h′)2(3R + a + h′) for h′ < 2a

0 for h′ ≥ 2a.
[9]
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FIG. 2. This schematic shows the origin of the depletion interaction between
a spherical particle and a flat wall. The spherical macromolecules are excluded
from a region of thickness a around the particle and also next to the wall. The
overlap of these excluded volume regions (indicated by the shaded region) is
energetically favorable, producing an attraction between the particle and wall.

Combining Eqs. [8] and [9] yields

Fparticle–plate

ρ∞kT πa R
=

{
−(

4 + 2 h′
R − 2 h′

a − (h′)2

a R

)
for h′ < 2a

0 for h′ ≥ 2a,

[10]

which is approximately twice the particle–particle interaction
for R � a (i.e., the Derjaguin limit).

Now consider the situation depicted in Fig. 3, in which two
particles are interacting simultaneously with each other and a
neighboring wall. The issue is whether the particle–particle and

FIG. 3. This schematic shows a situation in which two particles experience
a depletion interaction between themselves and between a neighboring wall.
However, because the overlapping particle–particle and particle–wall excluded
volumes (shaded areas) do not overlap with each other, the particle–particle

and particle–wall depletion interactions can be calculated independently using
Eqs. [7] and [10].
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FIG. 4. This figure illustrates the case when the particle–particle and
particle–wall excluded volume regions mutually overlap. The necessary correc-
tion to Eqs. [6] and [9] is equal to the volume of the small shaded region. Note
that the relative sizes of the particles and macromolecules have been changed in
this figure compared to Fig. 3 simply for illustration purposes.

particle–wall interactions can be calculated independently using
Eqs. [7] and [10] above or whether there is, in fact, some coupling
between the two interactions. This coupling can be seen clearly
in the simple schematics presented in Figs. 3 and 4. In Fig. 3,
the overlaps of the excluded volumes are clearly independent
of each other, meaning that the interactions can be calculated
separately. In other words, small changes in the interparticle
gap width would only affect the interparticle overlap region.
Likewise, small changes in the particle–wall gap width would
only affect the two particle–wall overlap regions.

On the other hand, Fig. 4 presents a system in which the
particle–particle and particle–wall overlap regions mutually
overlap by the amount indicated by the shaded region. Now the
total volume of the overlapping excluded volume regions will be
given by the particle–particle overlap volume, V overlap

particle–particle, plus
twice the single particle–plate overlap volume, V overlap

particle–plate,
minus the shared overlap volume, V overlap

shared , shown as the shaded
region in Fig. 4. Thus according to Eq. [4], the particle–particle
depletion force will be given by

Fparticle–particle

= +kTρ∞
∂
(
V overlap

particle–particle + 2V overlap
particle–plate − V overlap

shared

)
∂h

. [11]

(Note that V overlap
particle–plate has been multiplied by a factor of 2 here

because two particles are present.) The volume of the shared
overlap region indicated in Fig. 4 is given by

V overlap
shared = 2

∫ xm

x0

[
π

2
(R̄2 − x2) − (

R̄2 − x2
m

)1/2(
x2

m − x2
)1/2

(
R̄2 − x2 )1/2

]

R̄2 − x2
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where R̄ = (R + a), x0 = R + (h/2), and xm = [4 a R − h′(h′ +
2R + 2a)]1/2. The meanings of x0 and xm, as well as the limits
over which Eq. [12] applies, can be seen in the schematic shown
in Fig. 5, which is an expanded view of the region of mutual
overlap. The volume, V overlap

shared , given by Eq. [12] is twice the
volume of the shaded region. As seen, this volume becomes
zero when x0 and xm become equal. From the definitions of x0

and xm, this can be shown to occur when

(
R + h

2

)2

+ h′(h′ + 2R + 2a) ≥ 4 a R. [13]

The derivative of V overlap
particle–particle with respect to h in Eq. [11]

simply leads to the bulk particle–particle depletion attraction
given by Eq. [7]. Because V overlap

particle–plate is independent of h, the
derivative of this term with respect to h is zero. Thus the correc-
tion to the bulk particle–particle depletion attraction required
by the presence of the wall will be given by the derivative
of Eq. [12] with respect to h. As seen from the definitions of
x0 and xm, h appears only in the lower limit of the integral in
this equation. Thus using the chain rule of derivatives, we can
write

∂V overlap
shared

∂h
= ∂V overlap

shared

∂x0

∂x0

∂h
= −2 f integrand(x = x0)

(
1

2

)
= −f integrand(x = x0), [14]
the wall). Under these conditions, the limits given in Eq. [13]
where fintegrand(x) is the integrand in Eq. [12]. Thus

∂V overlap
shared

∂h
=




−
[

π
2

[
R̄2 − x2

0

) − (
R̄2 − x2

m

)1/2(
x2

m − x2
0

)1/2

+ (
x2

0 − R̄2
)

sin−1

(
R̄2 − x2

m

R̄2 − x2
0

)1/2] for
(
R + h

2

)2 + h′(h′ + 2R + 2a) < 4 a R

0 for
(
R + h

2

)2 + h′(h′ + 2R + 2a) ≥ 4 a R.

[15]

The complete expression for the interparticle depletion force next to a wall can be written

Fparticle–particle(h)

ρ∞kT πa R
=

{−(
2 + a

R − h
a − h2

4 a R

)
for 0 ≤ h < 2a

0 for h ≥ 2a

}

+ 1

πa R




[
π
2

(
R̄2 − x2

0

) − (
R̄2 − x2

m

)1/2(
x2

m − x2
0

)1/2

+ (
x2

0 − R̄2
)

sin−1

(
R̄2 − x2

m

R̄2 − x2
0

)1/2 ] for
(
R + h

2

)2 + h′(h′ + 2R + 2a) < 4 a R




. [16]

reduce to simply R ≥ 4a. In other words, for systems in which
0
ET AL.

FIG. 5. This schematic shows an expanded view of the shared particle–
particle and particle–plate overlap regions, V

overlap
shared . The value of V

overlap
shared will

be twice that of the shaded region and will become zero when x0 equals xm.
(Note that both x0 and xm are measured from the particle center.)

Note that the second term on the rhs of Eq. [16] will be zero
whenever the first term is zero (i.e., whenever h ≥ 2a).

It is interesting to examine how the correction to the bulk
particle–particle interaction in Eq. [16] depends on the ratio
of the macromolecule size to the particle size, a/R. For this
analysis, we will use the maximum possible value of the cor-
rection (Eq. [15]), which occurs when both h and h′ equal zero
(i.e., the particles are in physical contact with each other and
for
(
R + h

2

)2 + h′(h′ + 2R + 2a) ≥ 4 a R
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the particle size is at least four times the macromolecule size, the
wall effects will always be zero and the interparticle depletion
interaction can be calculated using Eq. [7].

Although the approach described here is restricted to the case
of purely hard sphere systems where interactions are completely
entropic in nature, Piech and Walz [17] showed that the depletion
interaction in charged systems can also be calculated using this
method provided that the actual macromolecule size is replaced
by an effective size that takes into account the thickness of the
charged double layer around the particles and macromolecules.
The authors presented an approximate formula for calculating
the effective double-layer thickness, but found that for typical
surface potentials in aqueous systems, this thickness was roughly
equal to five times the bulk Debye length, or 5κ−1. This value
was also observed in experimental measurements of the deple-
tion interaction by Odiachi and Prieve [18]. Using this criterion,
we can state that wall effects are negligible in systems where
R ≥ 4(a + 5κ−1).

EXPERIMENTAL

Overview of Technique

Measurements of the depletion interaction between two col-
loidal particles next to a solid plate were made with the hydro-
dynamic force balance (HFB) apparatus located at the Syncrude
Research Centre in Edmonton, Alberta. A brief overview of the
technique will be presented here; more details can be found in
Wu et al. (19).

A simplified schematic of the HFB technique is shown in

Fig. 6. In the experiments, the drag force produced by a linear At particle breakup, the net colloidal force between the parti-

cles will be just balanced by the vector sum of the drag and net
shear flow is used to separate two identical colloidal particles
FIG. 6. This schematic shows an expanded view of the HFB apparatus in the re
creating a linear shear flow in the gap region. At a sufficiently high shear rate, the
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that have been brought into direct contact. One of the particles is
actually adhered to a solid, stationary plate and remains fixed in
position during the shear flow. The second particle is held very
close to the plate by gravitational (buoyancy) forces yet can still
translate in the shear flow.

The hydrodynamic force acting on the free particle will be a
function of its distance from both the wall and the neighboring
particle. Following the notation of Wu et al., we let yb represent
the dimensionless distance (normalized by the particle radius)
between the centers of the free particle and the fixed particle,
while zb represents the dimensionless distance between the cen-
ter of the free particle and the wall. If we assume that a line
segment connecting the two particle centers is parallel to the
flow direction, then the force on the free particle normal to the
direction of flow (the x-direction in Fig. 6) will be zero. As
pointed out by Wu et al., if the two particles are slightly out of
alignment, the drag force in the x-direction will simply tend to
align them prior to breakup.

Dabros and van de Ven (20) solved the Stokes and continu-
ity equations to obtain the net drag force exerted on the free
particle. Using this solution, Wu et al. found that when the di-
mensionless distance between the two particles, yb, was less
than approximately 2.04 (i.e., a gap width less than 0.04R), the
drag force in the direction of flow was essentially independent
of yb. In the particular experiments described here (see details
below), 0.04R corresponds to a gap width of approximately
200 nm. Since this is beyond the typical range of colloidal inter-
actions, we assume here that the drag force acting on the particle
will depend only on the distance between the free particle and
plate.
gion of the colloidal doublet. The liquid cell is translated at a controlled velocity,
free particle in the doublet will separate from the adhered particle.
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gravitational forces (buoyancy). Thus

Fcoll = Fdrag,y(zb)
yb√

y2
b + (zb − 1)2

+ Fz
zb − 1√

y2
b + (zb − 1)2

,

[17]

where Fcoll is the colloidal force, Fdrag,y(zb) is the drag force,
and Fz is the force in the z-direction (normal to the plate), which
is composed of Fdrag,z and gravity. In the experiments described
here, the free particle is assumed to be in an equilibrium position
next to the plate; thus, the net force normal to the plate will be
zero. For values of zb between 1.01 and 2.0, Wu et al. found that
Fdrag,y could be accurately approximated by the linear relation-
ship

Fdrag,y ≈ 6πµG R2[1.16 + 1.19(zb − 1)], [18]

where µ is the fluid viscosity and G is the linear shear rate. For
values of zb less than approximately 1.01, the term in brakets
on the rhs of Eq. [18] is approximately 1.17 and Fcoll becomes
approximately the same as Fdrag,y . Combining Eqs. [17] and [18]
under this condition yields

Fcoll ≈ 1.17(6πµG R2). [19]

In the experiments described below, zb equal to 1.01 corresponds
to a particle–plate gap width of approximately 50 nm. Although

the actual gap widths in the experiments are probably slightly orientation of the top glass plate was controlled using tilt stages

greater than this (perhaps as large as 100 nm), the inaccuracy in- such that the gap spacing was uniform across the plates.
FIG. 7. This schematic shows an overview of the complete HFB apparatus. T
program, and the doublet breakup process can be viewed via a CCD camera and a
T AL.

troduced is still relatively small (i.e., less than a few percent) and
certainly less than the uncertainty present in some of the other
measured parameters (see Discussion below). Thus Eq. [19] was
deemed suitable for analyzing the experimental results.

It should be emphasized that this experiment yields one point
on the force profile curve, namely the point of maximum at-
traction (excluding the actual force of adhesion). However, this
force is clearly of great importance, as it determines the strength
of the aggregates formed in the secondary depletion flocculation
process.

Description of HFB Apparatus

The sample cell in the HFB apparatus consisted of two parts
(see Fig. 7). The lower part was an open-top square box with
a mirrored glass bottom. The particle solution was poured into
this box to a depth of several millimeters. The second part of
the cell was a stainless steel, cylindrical tube (5 cm diameter)
with a smooth glass plate glued to the bottom. This tube was
lowered into the sample solution such that the glass plate was
approximately 120 µm above the glass bottom of the box. A
microscope objective (Zeiss LD-Achroplan, 32x, 0.4 NA) was
then lowered into the top of the tube such that it could be focused
to any point in the fluid between the two glass plates. The actual
gap width was determined by focusing on both the top and the
bottom plates and then measuring the height difference using an
electronic displacement transducer (Omega Engineering). The
he x–y position of the sample well is computer controlled via a motion control
video monitor.
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The density of the particle solution was controlled to 1.07
using an H2O/D2O mixture. In this manner, the large polystyrene
latex particles used in the experiments (sp gr = 1.05) floated
up against the top glass plate until the electrostatic repulsion
between the negatively charged particles and plate was balanced
by gravitational (buoyancy) and depletion forces (van der Waals
forces between the particles and plate were calculated to be
relatively weak).

The bottom, square box rested on two stacked, motor-
controlled translation stages that allowed moving the box in both
the x and the y directions. A motion-control computer program
with a joystick interface was used to accurately control the po-
sition of these stages, which set the position of the bottom box.
In addition, this program could be used to drive either one of
the stages (x or y directions) at a set velocity. Since the gap
width between the two plates was known, the shear rate in the
gap could be easily calculated. Because the size of both plates
was orders of magnitude greater than the gap width, edge effects
could be safely ignored.

Experimental Materials

Water for preparing the solutions was produced using a MilliQ
deionization system from Millipore equipped with a 0.22-µm
filter. The measured resistivity was always at least 18.2 M�-
cm. D2O was obtained from Aldrich as 99.9% D and was used
as purchased. Reagent-grade KCl was purchased from Sigma
and was used without further purification. For each solution, the
relative proportion of H2O (sp gr = 0.996) and D2O (sp gr =

1.107) was varied to give a target solution density of 1.07. The with multiangle sizing option was used for the PCS analysis.

specific conditions used in the experiments are listed in Table 1.

TABLE 1
Summary of the Experimental Conditions Used in Each of the HFB Experiments

Macromolecule
Polystyrene Concentration of Effective Macro. Suspension

particle Manufacturer’s Measured indifferent ionic Particle zeta zeta viscosity
diameter reported diameter diameter a Concentration electrolyte strengthb potentialc potentialc (22◦C)d

Expt No. (µm) Material (nm) (nm) (% vol) (mM) (mM) pH (mV) (mV) (cP)

1 9.6 ± 0.7 Silica 12e — 0.05 0.384 0.406 6.15 −56 ± 11 −42 ± 9 1.09
2 9.6 ± 0.7 Silica 12e — 0.50 0.386 0.607 6.50 −54 ± 11 −42 ± 9 1.19
3 9.6 ± 0.7 Silica 12e — 0.50 0.923 1.14 6.50 −46 ± 10 −37 ± 10 1.19
4 9.6 ± 0.7 Silica 12e — 0.50 1.45 1.67 6.50 −39 ± 11 −33 ± 13 1.13
5 9.6 ± 0.7 Silica 12e — 0.80 0.389 0.743 6.51 −52 ± 9.5 −41 ± 10 1.20
6 9.6 ± 0.7 PS latex 21 ± 3 22.5 ± 3.8 0.05 0.387 0.413 4.28 −56 ± 9.0 −54 ± 10 1.11
7 9.6 ± 0.7 PS latex 21 ± 3 22.5 ± 3.8 0.25 0.364 0.447 3.78 −53 ± 8.5 −54 ± 8 1.13
8 9.6 ± 0.7 PS latex 21 ± 3 22.5 ± 3.8 0.50 0.386 0.522 3.57 −49 ± 8.0 −52 ± 9 1.17
9 9.6 ± 0.7 PS latex 21 ± 3 22.5 ± 3.8 0.68 0.387 0.555 3.47 −42 ± 7.0 −49 ± 7 1.18

10 9.6 ± 0.7 PS latex 38 ± 5 54.7 ± 10.4 0.006 0.386 0.395 5.44 −57 ± 11 −58 ± 7 1.11
11 9.6 ± 0.7 PS latex 38 ± 5 54.7 ± 10.4 0.05 0.387 0.389 4.79 −56 ± 11 −58 ± 7 1.11
12 9.6 ± 0.7 PS latex 38 ± 5 54.7 ± 10.4 0.05 1.45 1.46 4.79 −43 ± 9.0 −66 ± 7 1.11

a Measured using dynamic light scattering.
b Includes counterions released from macromolecules.
c Measured using electrophoresis.

The results of these measurements are summarized in Table 1.
d Measured using a Canon-Fenske viscometer.
e Obtained from a Dupont data sheet on Ludox colloidal silica.
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Monodisperse sulfate polystyrene latex spheres of mean di-
ameter 9.6 ± 0.7 µm were purchased from Interfacial Dynam-
ics Corporation (Portland, OR) as a dispersion in distilled,
deionized water. These particles were washed by several cy-
cles of sedimentation/redispersion followed by a purified ni-
trogen purge until the styrene odor was removed. Zeta po-
tentials of the particles were measured at varying electrolyte
and hydronium ion concentrations using a microelectrophore-
sis apparatus (model MKII, Rank Brothers, Ltd., Cambridge,
England). Care was taken to perform the zeta potential measure-
ments at the same ionic strength and pH values as those used in
the HFB experiments. The measurement results are reported in
Table 1.

Three different types of particles were utilized as macro-
molecules. Sulfate polystyrene latex spheres with mean diam-
eters 21 ± 3 and 38 ± 5 nm were purchased from Interfacial
Dynamics Corporation (Portland, OR) as a 7.77 vol% disper-
sion in distilled, deionized water. These particles were dialyzed
by the manufacturer and contained H+ as the counterion. Lu-
dox grade AM-30 colloidal silica was obtained from Aldrich
Chemical Company (Milwaukee, WI) as a 30 wt% aqueous
dispersion. These macromolecules were charge stabilized with
Na+ as the counterion. All macromolecules used in the experi-
ments were dialyzed against deionized water (resistivity at least
18.2 M�-cm) for a period of 2 weeks with the water changed ev-
ery day. In the case of polystyrene macromolecules, sizes were
checked with transmission electron microscopy (TEM) and pho-
ton correlation spectroscopy (PCS). A Brookhaven ZetaPlus in-
strument (Brookhaven Instruments Corporation, Holtsville, NY)
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As can be seen, the measured size of the smaller polystyrene
particles agrees very well with the manufacturer specifications.
However, the size of the larger polystyrene particles measured
by both TEM and PCS was significantly larger than value quoted
by the manufacturer. The Ludox AM-30 macromolecules could
not be reliably characterized by either of the two techniques
because of poor contrast and low repeatability.

To estimate macromolecule valence, simultaneous conductiv-
ity and pH measurements were performed on samples of increas-
ing macromolecule concentration (determined by evaporating
water from a sample and measuring the weight loss). These
measurements were performed with solutions having differ-
ent background electrolyte concentrations to check the depen-
dence of macromolecule valence on the solution ionic strength.
In the case of polystyrene latexes, this analysis determined
H+ to be the only counterion present. Furthermore, the esti-
mated macromolecule valences (111 charges/particle and 590
charges/particle for the 21- and 38-nm latexes, respectively)
compare reasonably well with the manufacturer-quoted values
of 130 and 680 charges/particle. The Ludox AM-30 colloidal sil-
ica dispersions were found to contain mainly Na+ counterions
with a negligible amount of H+ and OH− ions. The valence of
these macromolecules was approximately 48 charges/particle.
In all cases, the estimated macromolecule valences were found
to be independent of the background electrolyte concentration
at the ionic strengths used in the HFB experiments.

Mobilities of the macromolecules were measured at pH,
electrolyte concentrations, and D2O/H2O ratios correspond-
ing to the solutions used in the HFB experiments using
the Brookhaven ZetaPlus electrophoresis instrument. Although
the characterization was carried out on dilute suspensions, the
change in ionic strength and/or pH due to dissociated counte-
rions was accounted for by properly adjusting the concentra-
tions of indifferent electrolyte and strong acid (HCl), respec-
tively. Macromolecule zeta potentials were calculated from the
mobility values using the mobility program of O’Brien and
White (21).

For each suspension, the kinematic viscosity was deter-
mined with a Cannon-Fenske viscometer (Cole Parmer, Vernon
Hills, IL) and converted to true viscosity using gravimetrically
measured suspension densities. The results are summarized in
Table 1. A temperature of 22◦C was maintained during both the
HFB experiments and the characterization work.

Experimental Procedure

In performing the experiments, the microscope objective was
focused in the fluid near the top plate where the latex particles
would equilibrate. Because the particles and plate were nega-
tively charged, the particles would reach a stable position where
gravitational, electrostatic and depletion forces were balanced.
Invariably, it was possible to find a small number of particles
that had become adhered to the top plate. Locating these parti-
cles was performed by simply translating the bottom glass box

and identifying particles that remained stationary against the
shear flow.
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Once a fixed particle was found, a doublet was produced by
manipulating the bottom stage in order to collide a free parti-
cle with the stuck particle. At this point, the bottom plate was
translated in a single direction at a constant velocity for several
seconds. If the doublet did not separate, the velocity was in-
creased slightly and the procedure repeated until separation was
detected. This sequence was then repeated several times in op-
posite directions, as well as with other free particles. After that,
a new stuck particle was located and the breakup tests performed
again. The average separation velocity (and corresponding shear
rate) was then computed, and the resulting separation force was
determined using Eq. [19].

Analysis of Experimental Results

The total interaction between the two charged particles was
assumed to be composed of an electrostatic repulsion, a van der
Waals attraction, and a depletion interaction. Because charge
effects were important in these experimental systems (i.e., the
bulk Debye lengths were comparable to the size of the macro-
molecules), the interparticle depletion interaction was calculated
using the force balance model originally developed by Walz and
Sharma (16) and later advanced by Piech and Walz (22, 23). This
model calculates the depletion interaction between two spher-
ical particles immersed in a solution of nonadsorbing, charged
macromolecules, such as that illustrated in Fig. 8. Performing a
simple force balance to obtain the total force exerted on particle
1 by the surrounding macromolecules yields

F1(h) =
∫
x

ρ(x)∇1 E1(x) dx, [20]

where ρ(x) is the number density of macromolecules at position
x and ∇1 E1(x) is the gradient of the interaction energy with
respect to the surface of particle 1 (i.e., the interaction force
exerted on particle 1 by the macromolecule).

FIG. 8. This schematic depicts the system modeled in the force-balance
approach of Walz and Sharma (16). Two charged, spherical particles of radius
R are immersed in a solution of charged, spherical macromolecules of radius a

and bulk number density ρ∞. The interaction energy between a single macro-
molecule and particle 1 is E1(x), while that between two macromolecules is U (r).
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In the limit of low macromolecule concentrations, the macro-
molecule distribution around the two particles will follow a
Boltzmann distribution of the form

ρ(x) = ρ∞ exp

[−E(x)

kT

]
, [21]

where kT is the thermal energy and E(x) represents the potential
energy of mean force acting on the macromolecule at position
x. When two such particles, 1 and 2, are present, the resulting
energy can be approximated as the sum of the two individual
energies

E(x) = E1(x) + E2(x − r12), [22]

where r12 is a vector that points from the center of particle 1 to
the center of particle 2 (thus x − r12 points from the center of
particle 2 to a macromolecule located at position x). Substituting
equations [21] and [22] into [20] yields

F1(h) =
∫
x

ρ∞ exp

{
− [E1(x) + E2(x − r12)]

kT

}
∇1 E1(x) dx.

[23]

In more concentrated systems, interactions between the
macromolecules themselves, even of the simple hard sphere
type, will cause the equilibrium concentration of macro-
molecules in proximity to a surface to deviate from the
Boltzmann distribution. Virial expansion of the density func-
tion is one method to take into account these macromolecule–
macromolecule interactions. Specifically, for the case of a single
macromolecule interacting simultaneously with two large parti-
cles plus another macromolecule, we can write

ρ(x) = ρ∞ exp

{
− [E1(x) + E2(x − r12)]

kT

}

× {
1 + ρ∞[b1(x) + b2(x − r12)] + O

(
ρ2

∞
)}

, [24]

where b1(x) and b2(x) are the second virial coefficients for a
macromolecule at position x interacting simultaneously with
another macromolecule and the surface of particle 1 and par-
ticle 2, respectively. The virial coefficient for interactions with
particles 1 and 2 were assumed additive here (valid for weak
macromolecule–macromolecule interactions), and were calcu-
lated using (24)

bk(x′) =
∫
r

{
exp

[
− Ek(x′ + r)

kT

]
− 1

}

×
{

exp

[
− U (r)

kT

]
− 1

}
dr, [25]

where r is the center-to-center distance between the two macro-

molecules, k is equal to either 1 (x′ = x) or 2 (x′ = x − r12),
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and U (r) is the macromolecule–macromolecule interaction en-
ergy (see Fig. 8). The expression for the depletion force in a
monodisperse system is obtained by combining Eqs. [23] and
[24], yielding

F1(h) =
∫
x

ρ∞ exp

{
− [E1(x) + E2(x − r12)]

kT

}

× {1 + ρ∞[b1(x) + b2(x − r12)]}∇1 E1(x) dx. [26]

Piech and Walz later expanded this approach to consider sys-
tems in which the macromolecules were polydisperse (22) or
spheroidal (23) in shape.

The terms E(x) and U (r) in the above equation represent the
particle–macromolecule and macromolecule–macromolecule
interaction energies, respectively. For the experiments described
here, with charged spherical particles and macromolecules, the
relevant electrostatic interaction energies were calculated using
the linear superposition approach described by Bell et al. (25).
This approach assumes that at any point between two spheri-
cal particles, the total potential can be approximated as the sum
of the individual potentials, which is valid only for gap widths
much larger than the bulk Debye length. The applicability of
this particular approach for this problem is discussed in greater
detail by Piech and Walz (22).

As discussed above, the presence of the nearby wall can only
affect the interparticle interaction when the size of the particle
is less than four times the effective size of the macromolecules.
In the systems studied here, the particle radius was 4.8 µm, the
largest macromolecule radius was 19 nm, and the largest Debye
length was 15.4 nm (0.389 mM ionic strength). As discussed
above, a rough estimate of the effective thickness of the charged
double layer is 5κ−1. Using these values, the minimum ratio of
the effective particle size to the effective macromolecule size in
these experiments was 50, meaning that the effect of the wall
could be ignored.

The purely electrostatic component of the interparticle inter-
action was calculated using the linear superposition approach
of Bell et al. (25) described above. This model remains valid
for large particles, provided that the interparticle gap width is
much larger than the solution Debye length. We also considered
whether the flat wall could have any impact on the interparticle
electrostatic interaction. Sader and Chan (26) developed ana-
lytical expression for the electrostatic interaction between two
particles next to a charged wall or confined between two charged
walls. When the particle size was much greater than the bulk De-
bye length, which is easily satisfied in the present experiments,
the wall effect was found to be unimportant.

Finally, the van der Waals contribution to the total interaction
energy was calculated as

Evdw(h) = − R

12

∫ ∞

h

A(δ)

δ2
dδ, [27]
where A(δ) is the Hamaker constant between two planar
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FIG. 9. This graph shows the model-predicted potential energy profile be-
tween two 9.6-µm-diameter latex particles. The total interaction energy was
calculated as the sum of an electrostatic repulsion, a van der Waals attraction,
and a depletion interaction. The total energy barrier to breakup of the doublet
is the sum of the magnitudes of the secondary energy well and barrier. The
specific parameters used here were those corresponding to the system in which
21-nm latex particles at a volume concentration of 0.50% were used as the
macromolecules (see Table 1).

half-spaces separated by gap width δ, which was calculated using
the Lifshitz continuum approach. The Derjaguin approximation
has been applied in Eq. [27] to calculate the interaction energy
between two spherical particles using the energy/area interac-
tion between two half-spaces. The necessary spectroscopic data
for polystyrene, glass, and water was taken from Parsegian and
Weiss (27).

A typical interaction energy profile calculated in this man-
ner is shown in Fig. 9. The conditions used for this curve were
those corresponding to the experiment with 21-nm latex macro-
molecules at 0.50% vol. As seen, the energy profile is charac-
terized by a significant secondary energy well at approximately
90 nm gap width. It is this energy well in which the particles
become trapped when brought together at the start of an ex-
periment (aggregation in the deeper, primary minimum would
require much larger separation forces than those observed in
these experiments). The energy profile also displays a longer-
range energy barrier at approximately 130 nm. This secondary
barrier, which has been predicted by numerous researchers (28–
34), arises from an ordering of the small macromolecules in the
gap region at higher bulk concentrations. In fact, the true inter-
action energy profile would have a decaying, oscillatory shape
at large gaps, with the wavelength of the oscillations equal to

the spacing between the macromolecule layers in the gap region.
Because the Walz and Sharma model uses only a second-order
T AL.

virial expansion, only the first barrier of this oscillatory structure
is predicted.

The total energy barrier to separation of the doublet will be the
sum of the magnitudes of the secondary barrier and secondary
well. Between the secondary well and the secondary barrier, the
slope of the profile goes through a maximum, which is where
the attractive force between the two particles is greatest. Parti-
cle separation in the HFB experiments would thus occur when
the magnitude of the viscous drag force (calculated using
Eq. [19]) equals this maximum attraction.

RESULTS AND DISCUSSION

Comparison of Measured and Predicted Break Forces

The measured plate speeds at doublet breakup along with the
corresponding shear rates and particle hydrodynamic forces, are
given in Table 2. As can be seen, in a number of experiments, the
doublet broke at all speeds. This was observed, for example, with
each of the experiments using the 38-nm latex macromolecules.
The values of plate speed given are actually averages over re-
peated experiments with the same particle pair (in two different
directions), as well as different particle pairs. The standard de-
viations in plate speeds are also given, which were found to be
as low as 4% of the mean in one case to as high as 32% of the
mean in another.

A comparison between the measured and predicted particle
separation forces is given in Table 3. Also listed here is the total
energy barrier (in kT ) holding the doublet together for each of the
experimental systems. As seen, the predicted maximum force is
found to be larger than the measured force in five of the six cases
in which an interparticle attraction could be reliably measured.
For several of the experiments, the predicted attraction force was
below the sensitivity of the HFB technique (roughly estimated
to be 10−13 N for these experiments). In only one case (21 nm
latex, 0.25% vol.) was no attraction measured even though the
predicted force was greater than this sensitivity limit.

For the experiments in which an attraction was measured,
the average ratio of the predicted to the experimentally mea-
sured force needed for particle separation was 1.7. It should be
emphasized that this comparison involves no adjustable parame-
ters. In the discussion section, several factors that could possibly
explain this discrepancy are presented.

There are two other issues that should be mentioned here.
First, the hydrodynamic equations presented earlier assume lam-
inar flow in the gap region. To validate this assumption, we cal-
culated the Reynolds number for flow in the gap, defined here
as

Re = Gd2 ρ

µ
, [28]

where d is the plate spacing (approximately 120 µm in all exper-
iments), ρ is the bulk density, and µ is the bulk viscosity. The

−2
maximum value of Re was 7 × 10 , indicating that the flow
was laminar.
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TABLE 2
The Measured Separation Velocity and Corresponding Shear Force for Each HFB Experiment

Effective Plate speed at Shear rate at
ionic strength Plate spacing separationa separation Separation forceb

Macromolecule system (mM) (µm) (µm/s) (s−1) (N)

12 nm Silica, 0.05% vol 0.406 123.9 — — —
12 nm Silica, 0.50% vol 0.607 118.4 133 ± 34 1.12 ± 0.29 (6.79 ± 1.74) × 10−13

12 nm Silica, 0.50% vol 1.14 129.1 145 ± 20 1.12 ± 0.16 (6.79 ± 0.94) × 10−13

12 nm Silica, 0.50% vol 1.67 120.0 46 ± 11 0.38 ± 0.09 (2.20 ± 0.53) × 10−13

12 nm Silica, 0.80% vol 0.743 119.8 800c 6.68 4.07 × 10−12

21 nm Latex, 0.05% vol 0.413 125.7 — — —
21 nm Latex, 0.25% vol 0.447 122.9 — — —
21 nm Latex, 0.50% vol 0.522 134.3 135 ± 6 1.01 ± 0.04 (5.98 ± 0.24) × 10−13

21 nm Latex, 0.68% vol 0.555 127.5 240 ± 50 1.88 ± 0.39 (1.13 ± 0.24) × 10−12

38 nm Latex, 0.006% vol 0.395 124.3 — — —
38 nm Latex, 0.05% vol 0.389 141.5 — — —
38 nm Latex, 0.05% vol 1.46 128.9 — — —

a No value indicates that the doublet separated at all velocities.
b Calculated using Eq. [19].

c Because of a problem with the motion control program, the actual separation speeds for this experiment could only be estimated. The true break speed is no

e
lower than 800 µm/s and is believed to be only slightly larger than this, so a valu

The second issue was whether the concentration of macro-
molecules around the interacting particles could be affected
by the shear flow. The relative importance of the flow (rel-
ative to Brownian movement of the macromolecules) can be
characterized by the dimensionless Peclet number, Pe, defined
as (35)

Pe = 6πµa3 G

kT
. [29]

−5
For these experiments, the largest value of Pe was of order 10 , to be the largest contributors to deviations from the predicted

indicating that the viscous forces acting on the macromolecules

TABLE 3
Comparison of the Measured and Predicted Particle Separation Forces

Predicted energy profile

Total barrier to Maximum Maximum attractive
Effective ionic particle separation attractive Measured separation force/measured

Macromolecule system strength (mM) (kT ) force (N) force (N) separation force

12 nm Silica, 0.05% vol 0.406 0.063 1.95 × 10−15 — —
12 nm Silica, 0.50% vol 0.607 9.30 2.15 × 10−12 (6.79 ± 1.74) × 10−13 3.17
12 nm Silica, 0.50% vol 1.14 1.55 5.42 × 10−13 (6.79 ± 0.94) × 10−13 0.80
12 nm Silica, 0.50% vol 1.67 1.32 3.27 × 10−13 (2.20 ± 0.53) × 10−13 1.49
12 nm Silica, 0.80% vol 0.743 27.84 6.08 × 10−12 4.07 × 10−12 1.49
21 nm Latex, 0.05% vol 0.413 0.11 5.81 × 10−15 — —
21 nm Latex, 0.25% vol 0.447 2.13 3.02 × 10−13 — —
21 nm Latex, 0.50% vol 0.522 7.43 1.08 × 10−12 (5.98 ± 0.24) × 10−13 1.81
21 nm Latex, 0.68% vol 0.555 11.65 1.71 × 10−12 (1.13 ± 0.24) × 10−12 1.51
38 nm Latex, 0.006% vol 0.395 0.051 1.67 × 10−15 — —
38 nm Latex, 0.05% vol 0.389 0.13 7.40 × 10−15 — —
38 nm Latex, 0.05% vol 1.46 0.57 4.33 × 10−14 — —

results.
of 800 µm/s was used to estimate the separation force.

were much smaller than Brownian forces and thus the equilib-
rium distribution would be maintained.

Possible Causes of Discrepancy

We focus here on two possible causes of the discrepancy:
the size and size distribution of the macromolecules, and the
stochastic nature of the doublet breakup process. Although
there are clearly several other potential areas of uncertainty
in the measured parameters (e.g., the zeta potentials of the
particles and macromolecules), these two effects are thought
Avg. = 1.71
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Size and size distribution of the macromolecules. Both the
silica and the polystyrene particles used as the macromolecules
in these experiments were polydisperse. For example, the manu-
facturer of the 21-nm latex particles, Interfacial Dynamics Cor-
poration, quoted a coefficient of variation of 14.8% (correspond-
ing to a standard deviation of 3.83 nm) for the particle size
distribution. Recently, Piech and Walz (22) modified the model
of Walz and Sharma to account for a distribution in either the
size or surface potential of the nonadsorbing macromolecules.
A log-normal distribution, characterized by a mean and standard
deviation, was assumed. Using this model, we recalculated the
potential energy profile and the resulting maximum attractive
force for the experimental systems used here.

The effect of polydispersity on the potential energy profile
can be seen in the graph shown in Fig. 10, which was calculated
using the conditions of the experiment with 21-nm latex macro-
molecules at 0.50% vol. In performing these calculations, we
assumed that the total volume fraction of macromolecules re-
mained fixed, which is consistent with the approach used to pre-
pare the solutions in which a specific weight of particles (corre-
sponding to a specific volume of particles) was measured. As can
be seen in the figure, the polydispersity lowers both the height of
the secondary barrier and the depth of the secondary well, which
results in a reduction in the maximum attractive force by 13%.
These smaller energy wells result from the fact that the number
density of macromolecules must be lower in the polydisperse

FIG. 10. This graph shows the effect of polydispersity in the macromolecule
size on the depletion interaction. The experimental system is that using 21-nm
latex particles at 0.50 vol% (see Table 1). The polydispersity effect was calcu-
lated using the modified Walz and Sharma model described by Piech and Walz

(22). The magnitude of the polydispersity (standard deviation/mean of 14.8%)
was provided by the manufacturer (Interfacial Dynamics Corporation).
T AL.

case in order to maintain the same volume fraction, which is the
dominant effect on the depletion interaction. (The only excep-
tion is the system using 0.05% vol. macromolecules, where the
weak attraction is caused primarily by van der Waals forces.)

The change in the maximum attractive force for each of the
21-nm latex macromolecule systems is given in the top half of
Table 4. As seen, with the exception of the 0.05% vol. macro-
molecule case, the predicted separation force is reduced, provid-
ing better agreement with the measured force. Specifically, the
ratio of the predicted-to-measured force drops from an average
of 1.7 to 1.2 for these systems.

Unfortunately, the size distribution for the Ludox silica parti-
cles was not known, as no value was reported by the manufac-
turer and attempts to measure the sizes using transmission elec-
tron microscopy were unsuccessful. However, a more important
issue may be the actual macromolecule size. Specifically, the size
of 12 nm used in the calculations presented above was taken from
a data sheet on Ludox colloidal silica obtained from Dupont (the
actual manufacturer of the silica particles). However, published
measurements of the dry diameter of Ludox HS particles, also
listed as 12 nm in diameter on the Dupont data sheet, range from
13.5 to over 19 nm (36–39). Another possible factor is the pres-
ence of particle aggregates, which were observed using similar
Ludox AM particles by Matijevič et al. (40).

To determine the effect of uncertainty in the macromolecule
size, we performed a series of model runs using a conservative
value of 14 nm as the diameter of the macromolecules. Again,
since the solutions were prepared using a targeted weight of
silica particles, the volume fraction of particles was kept fixed,
meaning that the number density of macromolecules was de-
creased. The results of these calculations are shown in the bot-
tom half of Table 4. As seen, in most of the cases, the predicted
separation force was decreased. The nature of the change in the
maximum attractive force is determined by a balance between
the effects of a lower macromolecule number density and a larger
excluded volume around the particle. Each of these effects varies
nonlinearly with macromolecule size. Overall, the average ratio
of the predicted-to-measured separation forces decreases from
1.7 to 1.4.

In summary, it is clear that a significant part of the discrepancy
between the predicted and measured separation forces can be
explained by either the known polydispersity or uncertainties
in the actual diameter of the macromolecules. In the following
section, we review one other possible source of error, namely
the stochastic nature of the doublet breakup process.

Stochastic nature of breakup process. In the above analysis,
separation of the doublet was assumed to occur when the shear
force acting on the free particle was equal to the maximum
attractive force. Ignored in this analysis, however, is the fact
that the free particle is Brownian and thus the actual breakup
process is stochastic. A more relevant method for analyzing the
results would thus be to calculate how the shear force alters

the interparticle potential energy profile, such as that shown in
Fig. 9.
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TABLE 4
Effect of Polydispersity and Macromolecule Size on the Predicted Separation Force

Macromolecule Predicted separation Predicted separation
concentration Effective ionic Measured separation force with no force with 14.8%

(% vol) strength (mM) force (N) polydispersity (N) polydispersity (N)

21-nm Polystyrene systems

0.05 0.413 — 5.81 × 10−15 5.97 × 10−15

0.25 0.447 — 3.02 × 10−13 2.66 × 10−13

0.50 0.522 (5.98 ± 0.24) × 10−13 1.08 × 10−12 9.36 × 10−13

0.68 0.555 (1.13 ± 0.24) × 10−12 1.71 × 10−12 1.48 × 10−12

Avg. predicted/measured ratio 1.66 1.23

Predicted separation force with Predicted separation force with
12 nm macromolecule 14 nm macromolecule

diameter diameter

Ludox silica systems
0.05 0.406 — 1.95 × 10−15 2.26 × 10−15

0.50 0.607 (6.79 ± 1.74) × 10−13 2.15 × 10−12 1.40 × 10−12

0.50 1.14 (6.79 ± 0.94) × 10−13 5.42 × 10−13 5.13 × 10−13

0.50 1.67 (2.20 ± 0.53) × 10−13 3.27 × 10−13 3.68 × 10−13

0.80 0.743 4.07 × 10−12 6.08 × 10−12 3.78 × 10−12
Avg. predicted/measured ratio 1.73 1.35
In the presence of a constant shear force, the total potential
energy of the free particle can be written as

E(h) = Edep(h) + Eelect(h) + Evdw(h) + Eshear(h), [30]

where Eshear(h) will be equal to the shear force, given by Eq. [19],
times the gap width, h. Thus

Eshear(h) = 1.17(6π )µG R2h. [31]

This equation assumes that the shear force is relatively constant
with distance over the range of interest. Shown in Fig. 11 are
three potential energy curves demonstrating the effect of a con-
stant shear force. The solid line is the potential energy profile cal-
culated with no shear force included for the experimental system
using 21-nm latex macromolecules at 0.50% vol. Polydispersity
in the size of the macromolecules (CV = 14.8%) has been in-
cluded. For the dashed line, the shear force was set equal to
the predicted maximum attractive force (9.36 × 10−13 N) given
in Table 4. As seen, at this critical shear force, the magnitude
of the total energy barrier to breakup of the doublet is exactly
zero.

By comparison, for the broken (dash-dot-dot) line, the shear
component was calculated using the measured separation force
(5.98 × 10−13 N). As seen, an energy well is still present, how-
ever the total depth of this well is only approximately 1.3 kT ,
meaning that probability of particle detachment would be rela-
tively high. Moreover, because the potential energy drops rapidly
beyond this well, detachment would be essentially irreversible.
In addition to the depth of the energy well, the time required
for the particle to escape is also important since escape can occur
FIG. 11. This graph shows the effect of a constant shear force on the total
interparticle potential energy profile. These calculations were performed using
the parameters corresponding to the experiment with 21-nm latex particles at
0.50 vol% (see Table 1), along with 14.8% polydispersity in the size of the
macromolecules. The solid curve gives the energy profile calculated without
shear. For the dashed curve, the shear force was set equal to the maximum pre-
dicted attractive force between the particles (9.36 × 10−13 N here). The shear
component of the energy was calculated as the shear force times the separa-
tion distance. For the broken (dash-dot-dot) line, the shear force was the actual
measured force obtained from the HFB experiments (5.98 × 10−13 N here). As

seen, using the measured separation force, an energy barrier to breakup of the
doublet of approximately 1.3 kT is predicted.
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only if this time is smaller than the length of the experiment.
To calculate this time, a series of Brownian dynamics simula-
tions was performed using the method of Clark et al. (41). For
one-dimensional Brownian motion, the displacement of the free
particle, �h, in time �t can be calculated as

�h = D

kT
F�t + ∂ D

∂h
�t + χ

√
2D�t, [32]

where D is the particle’s diffusion coefficient at position h, F
is the net force acting on the particle at position h, and χ is
randomly chosen from a series of normally distributed numbers
with a mean of zero and a standard deviation equal to one. The
first term on the rhs of Eq. [32], referred to as the drift term, is
the change in position due to external forces. The second term
accounts for any spatial dependence of the diffusion coefficient
and tends to move the particle in the direction of higher mobility,
and the third term is the stochastic contribution to the change in
position.

The diffusion coefficient of the free particle can be calculated
as kT/ f , where f is the friction coefficient for particle motion
along the line of centers between two neighboring particles next
to a solid wall. The total friction factor for this system can be
calculated as f1 + f2, where f1 is the resistance to motion of a
single particle parallel to a solid wall and f2 is the resistance to
motion along the line of centers between two hard particles. The
resistance for motion of a particle parallel to a solid wall was
given by Goldman et al. (42) as

f1 = 6πµR

(
8

15
ln(R/h′) + 0.9588

)
, [33]

where h′ is the particle–plate gap width. An expression for the
resistance between two spherical particles moving along their
line of centers was given by van de Ven (43) in the form of
an infinite series. The following simple approximation of this
function, found to be accurate to within a few percent, was given
by Honig et al. (44),

f2 = 6πµR

(
6ĥ2 + 13ĥ + 2

6ĥ2 + 4ĥ

)
, [34]

where ĥ is the particle–particle gap width, h, divided by the
particle radius, R.

The time step, �t , in Eq. [32] must satisfy two requirements.
First, �t must be larger than the momentum relaxation time for
Brownian fluctuations, and second, �t must be small enough
that the diffusion coefficient remains relatively constant during
a change in position �h. The Brownian relaxation time is of
order m/6πµR, where m is the particle mass (41). For a 10-µm

diameter polystyrene sphere, this time is approximately 5 ×
10−6 s. Thus for these simulations �t was set to 10−4 s. We
T AL.

found that the typical change in position, �h, during this time
step led to negligible changes in the diffusion coefficient.

To perform these calculations, the force profile acting between
the particles was calculated using the measured separation force
(i.e., the force profile corresponding to the dash-dot-dot energy
profile in Fig. 11). The initial position of the particle was set to
96 nm, which is the position of the secondary energy minimum.
For calculation purposes, the particle–wall separation distance,
h′, was also set to 96 nm (this distance remained fixed in the
simulation). Note that because the particle–particle resistance,
f2, is the dominant resistance, using different values of h′ had
little effect on the final results. The simulation then proceeded
through a series of time steps and the change in position during
each step, �h, was calculated using Eq. [32]. The new position
of the particle was calculated at the end of each step as hnew =
hold + �h, and this new position was used in the following time
step. The program was run until the particle–plate separation,
h, reached a value of 1 µm, corresponding to the estimated
distance needed to detect separation in the HFB experiments. A
total of 10,000 such simulations were run and the average time
needed for doublet separation was found to be 2.1 s. Since each
shear flow was applied for at least several seconds in the HFB
experiments, the free particle would, on average, have more than
enough time to diffuse over the small energy barrier present at
the measured separation force.

In summary, the stochastic nature of the particles means that
breakup of the doublet would be likely at the measured separa-
tion forces. Table 5 lists the magnitude of the resulting energy
barriers to doublet breakup calculated using the measured sepa-
ration forces for the other experimental systems in which a mea-
surable attraction was found. For these calculations, the Ludox
diameter was assumed to be 14 nm and the known polydispersity
in the size of the 21 nm latex particles was included. As seen,
the largest energy barrier was approximately 2.3 kT , which
would not significantly inhibit separation. For example, Feigin
and Napper (45) suggest that energy barriers of at least 15–
20 kT are necessary to prevent rapid flocculation of bulk
particles.

TABLE 5
Predicted Energy Wells at the Measured Separation Force

Predicted energy
Effective Predicted energy barrier at the

ionic barrier in the measured
Macromolecule system, strength absence of shear separation force

(% vol) (mM) (kT) (kT)

12 nm Silica, 0.50% vola 0.607 6.53 2.27
12 nm Silica, 0.50% vola 1.14 1.87 No barrier
12 nm Silica, 0.50% vola 1.67 1.79 0.27
12 nm Silica, 0.80% vola 0.743 18.04 No barrier
21 nm Latex, 0.50% volb 0.522 6.54 1.29
21 nm Latex, 0.68% volb 0.555 10.18 1.05
a Assuming 14 nm macromolecule diameter.
b Including 14.8% polydispersity in the size of the macromolecules.
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SUMMARY

A relatively simple expression was derived for calculating the
effect of a solid, neighboring wall on the depletion interaction
between two particles. Both particles are assumed to be identical
and located equidistant from the wall. Although not explicitly
given here, this same expression could be used to determine how
the interaction between a single particle and wall is affected by
a neighboring particle. A useful finding from this analysis is that
the equations describing the bulk interparticle interaction (i.e.,
the Asakura and Oosawa potential) remain valid at all particle–
wall separations as long as the ratio of the particle radius to
the macromolecule radius is greater than four, a criterion that is
satisfied in many experimental systems.

Depletion forces as low as 2 × 10−13 N were measured be-
tween two 10-µm diameter particles in a solution of small,
negatively charged nanospheres using the hydrodynamic force
balance (HFB) apparatus. Because of the large particle-to-
macromolecule size ratios, wall effects were insignificant in
these experiments. It was found that the maximum attractive
force holding a doublet together in a secondary energy well could
be predicted relatively accurately with the force balance model
of Walz and Sharma (16), which was developed to study de-
pletion interactions with charged particles and macromolecules,
without any adjustable parameters. Specifically, when the effects
of polydispersity and variability in the macromolecule size were
included, the average ratio of the predicted-to-measured separa-
tion force was 1.3. It was shown that this remaining discrepancy
could easily be explained by the Brownian, or stochastic, nature
of the doublet breakup process.

It should be mentioned that one experimental system that
could be used to explicitly probe the effects of a wall on the
interparticle depletion interaction is one in which the depletion
force is produced by long, thin rods. In such a system, the charac-
teristic length scale of the depletion interaction is the rod length
(46), which can be made quite large with the total volume frac-
tion of rods remaining small, provided the rods are sufficiently
thin (i.e., very high aspect ratios). A possible material would be
bacteriophage fd virus used by Adams et al. (47), which has a
counter length of 880 nm and a diameter of 6.6 nm.
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