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Irreversible adsorption of colloid particles and globular proteins
at heterogeneous surfaces was studied theoretically. The substrate
surface was created by covering a uniform surface by coupling sites
(active centers) of a desired coverage. In contrast to previous stud-
ies concerned with disks, in our simulations the centers were mod-
eled by spheres having a size smaller than that of the adsorbing
particles. Adsorption was assumed to occur due to short-ranged at-
tractive interactions if the colloid particle contacted the center. The
Monte-Carlo-type simulations enabled one to determine the initial
flux, adsorption kinetics, jamming coverage, and the structure of
the particle monolayer as a function of the site coverage and the
particle/site size ratio, denoted by λ. It was revealed that the ini-
tial flux increased significantly with the site coverage θs and the λ

parameter. This behavior was quantitatively interpreted in terms of
the scaled particle theory. It also was demonstrated that particle ad-
sorption kinetics and the jamming coverage increased significantly,
at fixed site coverage, when the λ parameter increased. Practically,
for α = λ2θs > 1 the jamming coverage at the heterogeneous sur-
faces attained the value pertinent to continuous surfaces. The re-
sults obtained prove unequivocally that the spherically shaped sites
are much more effective in binding particles than the disk-shaped
sites considered previously. C© 2002 Elsevier Science (USA)

Key Words: adsorption of colloids; colloid adsorption; heteroge-
neous surface adsorption; irreversible adsorption; kinetics of parti-
cle adsorption; protein adsorption; random site adsorption.
INTRODUCTION

Adsorption and deposition (irreversible adsorption) of col-
loids, proteins, and other biomaterials on solid/liquid interfaces
are of large significance for many practical and natural pro-
cesses such as filtration, paper making, thrombosis, separation of
biomaterial-like proteins, bacteria, viruses, enzymes, and patho-
logical cells. Kinetics of these processes is regulated by the use
of coupling agents bound to interfaces which promote adherence
of particles. For example, cationic polyelectrolytes are used to
increase retention of filler particles in paper-making processes
(1, 2) or to promote a selective self-assembly of colloid parti-
cles at patterned surfaces (3). In biological applications special
1 To whom correspondence should be addressed.
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proteins (ligands) attached to the surface are applied for a se-
lective binding of a desired solute from protein mixtures as is
the case in the affinity chromatography (4). Analogously, in im-
munological assays (5, 6) one is often using special proteins
(antibodies) attached electrostatically or covalently to colloid
particles (e.g., polystyrene latex) to promote selective adsorp-
tion of other proteins (antigens) present in the serum. This leads
to aggregation (agglutination) of the colloid suspension, which
can easily be evidenced experimentally (7).

Similarly, many studies on colloid particle adsorption invol-
ved surfaces modified by polymers (8, 9), surfactants (10), or
chemical coupling agents (silanes) used to change the natural
surface charge of substrate surfaces (11). This is often the case
with natural mica used as molecularly smooth substrate in many
particle deposition studies (12).

A characteristic feature of the above-mentioned processes is
that particle or protein adsorption occurs at surfaces that are
inherently heterogeneous. This raises an important question on
how the size, shape, and surface concentration of adsorption sites
(which can be treated in the classical adsorption terminology as
active centers) influences the kinetics of particle adsorption. One
is also interested in predicting a priori the maximum (jamming)
coverage of particles attainable for a given concentration of sites.

Despite the significance of these processes few works in the
literature with the exception of the papers of Jin et al. (13, 14),
who studied theoretically irreversible adsorption of particles at
nonuniform surfaces covered by point-like adsorption sites, have
been reported. These surfaces were referred to as random site
surfaces (RSS). A correspondence (mapping function) between
the adsorption process at nonuniform surfaces and the widely
studied random sequential adsorption (RSA) over continuous
surfaces (11, 15–17) was found.

These results have been generalized to the experimentally
more interesting situation when adsorption sites have finite di-
mensions, comparable with the adsorbing particle size (18).
Adsorption kinetics and jamming coverage was determined via
Monte-Carlo-type simulations as a function of the particle/site
size ratio and their coverage. However, the validity of these re-
sults is limited by the fact that the sites were modeled as flat
disks incorporated into the substrate. Such a site configuration
is rather specific and difficult to realize in practice.
0021-9797/02 $35.00
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Therefore, the goal of this paper is to derive similar results
for the experimentally more interesting situation of active sites
formed by smaller-sized spherical particles attached irreversibly
to a homogeneous interface.

THE THEORETICAL MODEL

We consider the following model of irreversible adsorption of
colloid particles over heterogeneous surfaces. The sites (surface
heterogeneities) were represented by hard spheres of radius as

(see Fig. 1). There were N o
s spheres distributed over a homoge-

neous surface having the geometrical surface area �S. Without
loss of generality one can assume �S = 1 and normalize ac-
cordingly the sphere dimension. The surface concentration (2D
density) of the sites is then equal to N o

s , and the dimensionless
coverage is defined as θs = πa2

s N o
s . The configuration of the

sites can be produced in a number of ways, e.g., by quenching
an equilibrium fluid of a given coverage, or by performing RSA
simulations (11, 19), which was the procedure adopted in our
work.

The basic assumption of our model is that the colloid particle
(of a spherical shape) can only be adsorbed upon touching the
site, see Fig. 1. Otherwise, at bare interface, the particle will not
adsorb. Physically, this corresponds to the situation when the
particles are irreversibly bound to the sites due to short-ranged
attractive interactions of an electrostatic or chemical nature.

∆S

ri

al

2as

Si
FIG. 1. A schematic representation of particle adsorption over heteroge-
neous surfaces bearing spherically shaped adsorption sites.
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Furthermore, particle adsorption was assumed irreversible and
localized, which means that particle position at the site remained
fixed during the entire simulation run.

In accordance with these assumptions, particle adsorption at
the heterogeneous surfaces was modeled according to the fol-
lowing algorithm:

(i) An adsorbing (virtual) particle of radius al was generated
at random within the simulation area; if it did not touch any of
the heterogeneities the particle was rejected and another virtual
particle was produced (the number of attempts Natt was increased
by 1).

(ii) Otherwise, if the particle touched any of the sites, the
overlapping test was performed according to the usual RSA
rules; i.e., it was checked whether there is any previously ad-
sorbed particle within the exclusion volume (see Fig. 1). If there
was overlapping, the simulation loop was repeated (the number
of attempts was increased by 1).

(iii) If there was no overlapping, the virtual particle was as-
sumed irreversibly adsorbed at the given position and its coor-
dinates were stored, the number of adsorbed particles Np being
increased by 1.

It should be mentioned that particle adsorption at heteroge-
neous surfaces modeled by spherically shaped sites is a truly
three-dimensional process, opposite to adsorption at disk-shaped
sites considered previously (18). Hence, the adsorbed particle
centers are located in various planes which influenced both ad-
sorption kinetics and the coverage of particles.

As usual in the RSA simulation the coverage was calculated
as θl = πa2

l Np. On the other hand, the dimensionless computer
adsorption time is defined as (11, 13, 14, 18, 19)

τ = πa2
l

Natt

�S
= πa2

l Natt. [1]

By plotting θl vs the adsorption time τ defined above, one can
simulate the kinetics of particle adsorption.

An alternative evaluation of particle adsorption kinetics can
be achieved via the available surface function (ASF) approach
(13, 14, 18, 19). This function can be defined as normalized
probability p of adsorbing a particle for a given configuration of
sites, their coverage θs, and the particle coverage θl. Addition-
ally, the ASF is dependent on the particle to site size ratio al/as

denoted by λ. This function can effectively be evaluated from
simulations by performing, at fixed θs and θl, a large number of
adsorption trials Natt, Nsucc of them being potentially success-
ful. Then the ASF is defined as the limit of Nsucc/Natt when
Natt → ∞. In practice, due to computer time limitations, Natt

was about 105. Especially important is the value of ASF in the
limit of negligible particle coverage, θl = 0 since it characterizes
the initial flux to heterogeneous surfaces. This quantity is of a

primary interest from an experimental viewpoint. Knowing ASF
one can calculate particle adsorption kinetics by integrating the
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constitutive dependence (13–17)

dθl

dτ
= p. [2]

As discussed in (20) this classical concept of the ASF may be
not general enough to deal with the diffusion-controlled adsorp-
tion of particles. More refined approaches, considering various
transport mechanisms of particles in the bulk, have been pro-
posed (21–23). However, due to insurmountable mathematical
problems, their applicability for heterogeneous surface adsorp-
tion seems prohibitive. Therefore, in this work, we adopt the
standard ASF concept which reflects the most important features
of the problem of particle adsorption at heterogeneous surfaces.
This function can be used for specifying boundary conditions
for the bulk transport equation as shown in (24).

The pair correlation function g(rl) (often referred to θs as the
radial distribution function RDF) was calculated by generating
particle populations according to the above RSA scheme and
exploiting the definition (19)

g(r ) = πa2
l

θl

〈
�Np

2πr�r

〉
, [3]

where 〈 〉 means the ensemble average and �Np is the number of
particles adsorbed within the ring 2r�r drawn around a central
particle. It should be mentioned that the distance r was mea-
sured between the projection of the adsorbed particle centers
on the adsorption plane. Obviously, all particles located close
to the perimeter of the simulation area were discarded from the
averaging procedure. In order to obtain a satisfactory accuracy
of g(r ), particle populations reaching 105 were considered.

RESULTS AND DISCUSSION

Limiting Analytical Expressions

Despite simple rules, the topology and kinetics of particle ad-
sorption at heterogeneous surfaces is rather complex, especially
at a higher coverage θl. Due to the high dimensionality of this
problem, no analytical results of a general validity can be for-
mulated. However, useful limiting expressions can be derived
for the low coverage of adsorbed particles. These expressions
having a practical significance can be exploited for testing the
validity of numerical simulations.

From simple geometrical considerations one can deduce that
the particle adsorbs if the distance between its center projected
on the adsorption plane and the site center ri becomes smaller
than 2

√
alas (see Fig. 1). Hence the interaction area of the par-

ticle with the site is

Si = πr2
i = 4πalas. [4]
If the site distribution can be treated as uniform, the probability
of finding any site within the interaction area can be calculated
E ADSORPTION 69

from the Poisson distribution as

p0 = 1 − e−Si N 0
s = 1 − e−4λθs . [5]

One can deduce from Eq. [5] that in the limit of θs < 1/4λ,
p0 = 4λθs.

This probability, which can be identified with the ASF, de-
scribes the initial flux of particles when θl = 0.

Obviously, Eq. [5] becomes less accurate in the limit of larger
θs when the distribution of the sites deviates from a uniform
distribution (11, 19). A more accurate expression can be formu-
lated by exploiting the results discussed in (19). By exploiting
the scaled particle theory of Reiss et al. (25) it was demonstrated
that the probability of finding a cavity of surface area Si devoid
of sites (smaller sized particles) is given by the formula

pc = B0
l = (1 − θs)e

− (4λ−1)θs
1−θs

−
[

(2
√

λ−1)θs
1−θs

]2

, [6]

where B0
l is defined as the surface blocking function for the

analogous problem of particle adsorption over surfaces precov-
ered with smaller sized particles (when adsorption occurs at the
uncovered interface only). Since the probability of finding a site
within the interaction area equals 1 − pc one can predict that

p0 = 1 − B0
l = 1 − (1 − θs)e

− (4λ−1)θs
1−θs

−
[

(2
√

λ−1)θs
1−θs

]2

. [7]

Formulas [5] and [7] are valid for initial stages of adsorption
when θl = 0. In the case when θl is finite but the site coverage
remains small, so θs < 1/4λ, the adsorption probability of par-
ticles can be expressed via the Langmuir-like formula

p = Si
(
N 0

s − Np
/

ns
)
(1 − qθl), [8a]

where ns is the site multiplicity to be determined from numerical
simulations and the multiplier 1 − qθl accounts for exclusion
effects among particles (lowest order correction). From simple
geometry one can deduce that for λ > 4 one site can coordinate
only one particle, so ns = 1.

Equation [7] can be rearranged to

p = 4λθs(1 − θl/λ
2θsns)(1 − qθl)

∼= p0
(
1 − θl

/
θmx

l

)
, [8b]

where

θmx
l = λ2nsθs

1 + qλ2nsθs
[9]
can be treated as the maximum coverage of large particles in the
limit when the site coverage becomes low.
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FIG. 2. The dependence of the initial adsorption probability p0 on sur-
face coverage of adsorption sites θs; the points denote numerical simulations
performed for (1) �, λ = 10; (2) �, λ = 5; and (3) �, λ = 2. The solid lines
represent the analytical results derived from Eq. [7], and the broken line shows
the analytical predictions for adsorption on disks, when p0 = θs (18).

Numerical Results

The numerical calculations discussed hereafter concerning
the ASF, adsorption kinetics, jamming coverage, and pair corre-
lation function have been carried out for the values of λ = 2, 5,

and 10, which seem typical for practically occurring situations.
As mentioned, the quantity of a primary practical interest is

the p0 function, which represents the averaged probability of
adsorbing the particle at surfaces covered by a given number
of sites. Hence, by knowing p0 one can calculate the initial flux of
solute (particles) to heterogeneous surfaces. The dependence of
p0 on θs calculated for λ = 2, 5, and 10 is plotted in Fig. 2. As
can be noticed, the adsorption probability of particles increases
abruptly with θs, especially for larger λ values. For λ = 10, the
probability of adsorption reaches unity (the value pertinent to
homogeneous surfaces) for θs as low as 10%. This behavior is
well reflected by Eq. [7] being in a quantitative agreement with
the numerical data for the entire range of θs and λ studied. It
is also interesting to note that adsorption probability at spheri-
cal sites becomes considerably larger than that for circular sites,
when p0 = θs (18), depicted by the broken line in Fig. 2. This ob-
servation has practical implications, showing that the geometry
of the active sites plays a more decisive role than their surface
concentration. The results shown in Fig. 2 further imply that
by measuring experimentally the flux of larger colloid particles

(which can easily be done by direct microscope observations)
one can detect the presence of nanoscale surface heterogeneities,
´ SKI, AND MUSIAL�

invisible under the microscope. If the surface concentration of
the sites can be estimated, one can determine their size or shape
from the particle deposition experiments.

The validity of the theoretical results shown in Fig. 2 has been
confirmed in experiments involving polystyrene latex particles
adsorbing at sites produced from smaller sized particles pread-
sorbed at mica (26).

One should remember, however, that the results shown in
Fig. 2 describe the particle adsorption rate at heterogeneous sur-
faces in the limit when their accumulation is negligible, i.e., for
θl → 0 only. If θl becomes finite, the probability of particle ad-
sorption decreases as a result of volume exclusion effects (often
referred to less accurately as surface blocking effects). The ad-
sorption probability (ASF) is then a function of θs, θl, and λ. It
was found in the simulations that a more universal behavior ex-
hibits the reduced ASF function p/p0, which is plotted in Fig. 3
for λ = 2 and in Figs. 4 and 5 for λ = 5 and 10, respectively.
As can be observed in Fig. 3, for θl < 0.1 the p/p0 function
can be well reflected by the Langmuir-like model, described
by Eq. [8]. The site multiplicity parameter n was found from
numerical simulations to be 2.45 (in the limit of low coverage
θl), whereas the q parameter was assumed equal to 4, which
corresponds to the exclusion area of two spherical particles
(10, 16). On the other hand, for θl > 2 the p/p0 function be-
comes independent of θs and approaches the universal curve de-
rived from the classical RSA model (16, 17) for homogeneous

FIG. 3. The dependence of the reduced ASF, p/p0 on θl; the points denote
numerical results obtained for λ = 2 and (1) �, θs = 0.5 (α = 2); (2) �, θs =
0.2 (α = 0.8); (3) �, θs = 0.1 (α = 0.4); and (4) �, θs = 0.05 (α = 0.2). The

solid lines represent the results for the RSA model of homogeneous surfaces,
Eq. [11], and the dashed line shows the results calculated from Eq. [8b].



L
COLLOID PARTIC

θl

0.0 0.1 0.2 0.3 0.4 0.5

p/po

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

FIG. 4. The dependence of the reduced ASF, p/p0 on θl; the points
denote numerical results obtained for λ = 5 and (1) �, θs = 0.5 (α = 12.5);
(2) �, θs = 0.2 (α = 5.0); (3) �, θs = 0.1 (α = 2.5); and (4) �, θs = 0.05
(α = 1.25). The solid line represent the results obtained for the RSA model
of homogeneous surfaces, Eq. [11].
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FIG. 5. The dependence of the reduced ASF, p/p0 on θl; the points
denote numerical results obtained for λ = 10 and (1) �, θs = 0.5 (α = 50);
(2) �, θs = 0.2 (α = 20); (3) �, θs = 0.1 (α = 10); and (4) �, θs = 0.05 (α =

5.0). The solid line represents the results obtained for the RSA model of homo-
geneous surfaces, Eq. [11].
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surface adsorption. Similar results were observed for λ = 5 and
10, as can be seen in Figs. 4 and 5. One can, therefore, summarize
these results by expressing the postulate that in the case when
α = λ2θs > 1 particle adsorption at heterogeneous surfaces is
governed by the function

p = p0 B(θl), [10]

where the function p0(λ, θ ) is given by Eq. [7] and B(θl) can be
calculated from various analytical fitting functions of the type
(16, 17)

B(θ̄l) = f (θ̄l)(1 − θ̄l)
3, [11]

where θ̄ = θl/θ
∞
l , θ∞

l is the jamming coverage, and f (θ̄l) are
low-order polynomials. One of the most accurate expressions
for f (θ̄l) has the form (16)

f (θ̄l) = 1 + 0.812θ̄l + 0.426θ̄2
l + 0.0716θ̄3

l . [12]

As can be deduced from Eqs. [11 and 12], in the limit when
θ̄l → 1 the blocking function assumes the form

B(θ̄ ) ∼= 2.31(1 − θ̄l)
3. [13]

It is interesting to note that Eq. [13] can be derived by topological
arguments as discussed in (15–17). Thus, according to Eq. [10]
the (p/p0)1/3 function for the heterogeneous surfaces should
depend linearly on θl. The numerical results plotted using this
transformation in Fig. 6 confirm this hypothesis. This has sig-
nificant practical implications because all the results known pre-
viously for homogeneous surfaces can directly be transferred to
heterogeneous surface adsorption. In particular, by substituting
the expression for the ASF given by Eq. [10] into the constitutive
dependence, Eq. [2], one obtains

θl∫
d θ̄ ′

B(θ̄ ′)
= p0τ/θ∞

l = τ ′. [14]

One can deduce from Eq. [14] that all the kinetic results known
previously for the continuous surfaces can be directly transferred
to heterogeneous surfaces by introducing the transformed ad-
sorption time τ ′ = p0(θs, λ)/θ∞

l τ . In particular, by substituting
Eq. [13] into Eq. [14] one obtains upon integration the limiting
result

θl(τ
′) = θ∞

l

(
1 − C√

τ ′

)
, [15]

where

C =
√

θ∞
l

4.62p0
.

¯
However, in the general case, with B(θl) given by Eq. [11],
the integration procedure is rather awkward. Jin et al. (13, 14)
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FIG. 6. The dependence of (p/p0)1/3 on the reduced coverage θ̄l = θl/

θ∞
l ; the points denote numerical simulations, performed for various λ and θs.

The solid line represents the analytical approximation calculated from Eq. [15].

derived the following interpolation function which adequately
interpolates the data for the entire range of times

θl = θ∞

(
1 − 1 + 0.314τ ′2 + 0.45τ ′3

1 + 1.83τ ′ + 0.66τ ′3 + τ ′7/2

)
, [16]

where τ ′ is the transformed adsorption time.
The numerical data expressed using the above transformation

for various λ and θs are plotted in Fig. 7. As one can notice
for α > 1 the simulations approach the universal kinetic curve
given by Eq. [16], which validates the hypothesis expressed via
Eq. [10]. The jamming coverage θ∞

l needed for the time transfor-
mation was obtained as previously done for continuous surfaces
(19) by a linear extrapolation of numerical results to infinite time
(in the coordinate system θl vs (τ ′)−1/2).

Because the jamming coverage θ∞
l has a fundamental prac-

tical significance we performed extensive simulations aimed at
determining this parameter as a function of θs and λ. The results
plotted as θ∞

l vs θs (in logarithmic scale) are collected in Fig. 8.
The analytical results predicted from the low coverage depen-
dence, i.e., θl = λ2θs, are also plotted for comparison (dashed
lines in Fig. 8). As can be noticed this analytical formula works
for λ2θ < 0.02 only. It was found that for higher site coverage
the numerical results can be well interpolated by the simple an-
alytical function

(
λ2θs

)

θ∞

l = θ∞ 1 − e−
θ∞ . [17]
SKI, AND MUSIAL�
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FIG. 7. Particle adsorption kinetics expressed in the universal coordinate
system θl/θ

∞
l vs τ ′ = τp0/θ

∞
l ; the points denote the numerical simulations

performed for various θs and λ, and the solid line represents the limiting results
for continuous surfaces (RSA model), calculated from Eq. [16].
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FIG. 8. The dependence of the jamming coverage of particles θ∞
l on the

coverage of the adsorption sites θs; the points denote the results of numerical
simulations, performed for (1) �, λ = 10; (2) �, λ = 5; (3) �, λ = 2. The solid

lines represent the fitting functions given by Eq. [18], and the dashed lines show
the results derived from the Langmuir model, i.e., θl = λ2θs.
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This formula gives a satisfactory accuracy for the entire rang of
θs studied. However, it breaks down for λ = 2 probably due to the
site multiplicity effect discussed previously. Moreover, in this
case, a maximum on the θl vs θs dependence is observed for θ

about 0.25. This maximum jamming coverage attains the value
of 0.57, being slightly larger than that for adsorption at uniform
surfaces. The maximum appears because, for θs about 0.2–0.3,
the area accessible for particle adsorption becomes larger than
the geometrical interface area, which can be interpreted as ap-
parent roughness effect. When θs increases further above this
critical value, the accessible area becomes again very close to
the geometrical interface area. Although this effect is interesting
from a theoretical point of view, it will be difficult to measure
experimentally. This is so because in practice it is very difficult
to measure the surface coverage of particles with a relative ac-
curacy better than 5% due, for example, to the polydispersity
effects (27).

It was found that a reasonable fitting function for the case
λ = 2 has the form

θ∞
l = θ∞

(
1 − e− nsλ2θs

θ∞
)
. [18]

Except for the region near the maximum, and θs < 0.002, this
function ensures a uniform fit of the numerical data with an
accuracy better than a few percent. It is worthwhile noting that
the jamming coverage in the case of spherical adsorption sites
increases with θs in a more efficient way (for θs > 0.05) than
that for disk-shaped sites (18). In the latter case the jamming
coverage for λ > 2 was well reflected by the rational function.

Once θ∞
l is known one can unequivocally evaluate the block-

ing function B(θl) via Eq. [11] and particle adsorption kinetics
via Eq. [14] or its integrated form, Eq. [16]. As discussed in some
detail elsewhere (22, 24, 28) such an approach is only valid when
the thickness of the diffusion boundary layer remains compa-
rable with the adsorbing particle dimension. This requirement
is fulfilled for micrometer-sized particles under forced convec-
tion transport conditions only (28). For smaller particles and the
diffusion-controlled transport conditions the coupling between
the bulk and surface transport should be considered via the ap-
proach developed in (24, 27, 28) for uniform surfaces. Accord-
ing to this model, Eq. [10] can be exploited as the boundary
condition for the bulk transport problems. In this way the main
features of particle adsorption at a heterogeneous surface can
be properly reflected, in particular the initial adsorption rate and
the jamming coverage. However, due to complicated topology,
a more detailed description of these processes requires further
theoretical studies.

Besides kinetic aspects, in many applications of practical in-
terest, e.g., colloid lithography, one is interested in the struc-
ture of the particle monolayer. The structure is directly char-
acterized in terms of the pair correlation function g(r ). It was
determined from particle populations generated in simulations

according to the procedure described above. As mentioned, in
order to attain a satisfactory accuracy of the pair correlation
E ADSORPTION 73
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FIG. 9. The pair correlation function of particles g derived from numerical
simulations for the heterogeneous surfaces, λ = 2, θs = 0.1: (1) �, θl = 0.5; (2)
�, θl = 0.2; (3) �, θl = 0.1; (4) �, θl = 0.05. The dotted lines denote the results
pertinent to uniform surfaces (derived from the standard RSA model).

function g(r ), particle populations reaching 105 were consid-
ered by averaging over many simulation runs. The distributions
of g derived from numerical simulations for θs = 0.1, λ = 2,

and various θl are shown in Fig. 9. Similar results obtained for
λ = 2, θl = 0.5, and site coverage θs ranging from 0.1 to 0.5 are
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FIG. 10. The pair correlation function g derived from numerical simula-
tions for the heterogeneous surfaces, λ = 2, θl = 0.5: (1) �, θs = 0.5; (2) �,
θs = 0.2; (3) �, θs = 0.1. The dotted lines represent the pair correlation function
pertinent to uniform surfaces (derived from the standard RSA model).
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plotted in Fig. 10. As can be observed the structure of parti-
cle monolayers for λ = 2 at heterogeneous surfaces resembles
closely the structure monolayer predicted theoretically and ob-
served at homogeneous surfaces for polydisperse particle sys-
tems (27). This indicates that adsorption at sites occurs in various
planes, so particle projections on the interface can overlap. This
is reflected by the g(r ) function which remains finite for r < 2.
It should be mentioned, however, that the apparent overlapping
effect becomes negligible for site coverage exceeding 0.2 (cf.
Fig. 10). In this case the structure of particle monolayers be-
comes practically identical with the structure generated in the
RSA processes at homogeneous surfaces. Similarly, as can be
seen in Fig. 11, for increased λ (larger particle to site size ratio)
the structure of particle monolayers at heterogeneous surfaces
becomes practically indistinguishable from that at homogeneous
surfaces.
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FIG. 11. The pair correlation function g derived from numerical simulations
for θl = 0.5, (1) �, θs = 0.5; (2) �, θs = 0.2; (3) �, θs = 0.1. The dotted lines

represent the pair correlation function pertinent to uniform surfaces (derived
from the standard RSA model). (a) λ = 5, and (b) λ = 10.
´ SKI, AND MUSIAL�

It should be mentioned that all the results obtained in this work
concern hard particle adsorption problems, when the range of
interactions is much smaller than particle dimension. Such a sit-
uation can be realized experimentally for high electrolyte con-
centration when the electrostatic double-layer interactions are
eliminated (12). For dilute electrolytes the interaction becomes
comparable with particle size, which affects both adsorption ki-
netics and the jamming coverage. The latter parameter for inter-
acting systems can be calculated using the effective hard particle
concept developed in (11). However, the range of the validity of
this approximation can only be estimated by comparison with
numerical simulations planned in the future.

CONCLUDING REMARKS

It was demonstrated that the initial adsorption rate of particles
at surfaces covered by spherical adsorption sites is well reflected
by Eq. [7], which indicates that for θs > 1/4λ, the rate attains the
maximum value characteristic of homogeneous surfaces. In this
respect the adsorption of particles at spherical sites is much more
efficient than adsorption at disks studied previously. The validity
of the simulations and Eq. [7] has been confirmed in model
experiments involving polystyrene latex particles adsorbing at
oppositely charged sites attached to mica (26).

On the other hand, for θs < 1/4λ and θl > 0 the particle ad-
sorption rate is given by the quasi–Langmuir model

p = p0
(
1 − θ

/
θmx

l

) = 4λθs
(
1 − θ

/
θmx

l

)
,

where the apparent saturation coverage θmx
l is given by Eq. [9].

If the inequality α = λ2θs > 1 is fulfilled (high site den-
sity limit) the particle adsorption rate is described by the
formula

p = p0 B(θl),

where B(θl) is the blocking function derived from the stan-
dard RSA model for homogeneous surfaces, given explicitly by
Eqs. [11 and 12]. This indicates that all the results known pre-
viously for homogeneous surfaces can be directly transferred
to heterogeneous surfaces by an appropriate adsorption time
transformation. In particular one can deduce that adsorption ki-
netics is given by Eq. [16] with the reduced adsorption time
τ ′ = p0τ/θ∞

l . The jamming coverage θ∞
l needed in this trans-

formation can be calculated from the simple interpolating func-
tion

θ∞
l = θ∞

(
1 − e− nsλ2θs

θ∞
)
,

where the site multiplicity parameter ns was found equal to 2.45
for λ = 2 and equal to 1 for λ > 4.

From the numerical simulations it was also deduced that the

structure of particle monolayers formed at heterogeneous sur-
faces resembles closely that at homogeneous surfaces if λ > 2.
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