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Abstract

An approximate method is evaluated for calculating the second virial coefficient in a dilute macromolecular solution bounded by two
interfaces. The approximation is essentially the superposition of the coefficients calculated independently for each surface. To test this
approach, the depletion interaction between two particles in a solution of nonadsorbing, spherical macromolecules is calculated in systems
with either hard-wall or long-range electrostatic interactions. In all systems tested, the interparticle interaction energy calculated with the
approximation is found to be in good agreement with that calculated using the exact approach (e.g., error less than 2% at the smallest
separations). The primary advantage of this approximation is a significant reduction in the computation time required for calculating the
depletion interaction, especially in charged systems. The paper also shows that the expressions for predicting the depletion interaction in
purely hard-sphere systems can be used in dilute ionic systems, provided the appropriate effective macromolecule size is used. For the
attractive depletion interaction, this effective size is determined by the range of the particle—macromolecule interaction (as opposed to the
macromolecule—-macromolecule interaction).
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1. Introduction virial expansion is truncated after the second term, the model
is valid only for relatively dilute solutions (i.e., effective
The depletion interaction between two colloidal parti- Macromolecule concentration of order 1%). One reason for

cles in the presence of a nonadsorbing species (henceforti(S refative simplicity is that the model uses an approxi-
referred to as macromolecules) has received considerabldnate method for calculating the second virial coefficient for
attention over the past several years and a variety of compu-& macromolecule that is positioned so that it can interact
tational approaches have been developed for producing thisSimultaneously with two neighboring particles. Effectively,

force (see Jenkins and Snowden [1]) for a good review). Onethe approximationis a superpogltlon of the virial coefﬁments
of the relatively simplest, though approximate, approaches calculated for each of the particle/macromolecule interac-

is the force balance model of Walz and Sharma [2]). Es- ions independently. The objective of this work is to ex-
sentially, this model calculates the force exerted on a par-@mine the validity of this approximation in systems having

ticle by summing the particle/macromolecule force over all either simple hard-sphere or longer-range electrostatic inter-

macromolecules in solution (explained in greater detail in actions.
Section 2).
The Walz and Sharma model uses a virial expansion of
the single particle distribution function to calculate the spa- 2. Theory
tial distribution of macromolecules in solution. Because the
A detailed description of the Walz and Sharma model can
< . be found elsewhere [2,3]. Here we present a basic overview.
Corresponding author. . . . .
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The force exerted on particle Ez, by the macromolecules
can be calculated as

Fi1(rio) =— / p(r1,r2, pp)ViEn_p1(ra,r2, pp)dry, (1)

r
wherer 1 is the position of a macromolecule defined relative
to the center of particle I, is a vector pointing from the
center of particle 1 to the center of particler3,is the po-
sition of a macromolecule relative to the center of particle 2
(r2=r1—r12), p(r1,r2, pp) is the local density of macro-
molecules at positiony, and —V1E,,_,1(r1,r2, pp) is the
mean force acting on a macromolecule located at position
with respect to the surface of particle 1.

Walz and Sharma calculated the density distribution of
macromolecules at any position in the fluid using a second
order virial expansion in bulk macromolecule number den-
sity of the form

En(ry,rz, ,Ob)i|
kT

X [1+b2(r1. 12, pp) s )

whereb, is the second order virial coefficient afig, (r1, ro,
pp) is the total macromolecule potential at position An
expression fob, was provided by Glandt [4],

E,(1,r1o,
ba(ry,r2, pp) =/!exp[_W} _ 1}
r/
X {exp|:— i| _ 1} dl,/7

whereU,,,_, (r1,1’, pp) is the potential of mean force of two
macromolecules located at positionsandr’ (both posi-
tions defined relative to the center of particle 1), respectively,
and the integration is over the total system volume.

It should be noted that at sufficiently high macromole-
cule concentrations, Eq. (1) predicts not only a short-range
depletion attraction, but also a longer-range repulsion. This
repulsion arises from an ordering of the macromolecules
in the gap region and is part of a more general oscillatory

p(r1,r2, pp) = pp EXD[—

Unp—m(ra, r', ©b)

T ®3)

profile that has been predicted and measured by numerous

authors [5-10]. Because only a second order virial expan-
sion is used in the Walz and Sharma model, however, only
the short-range attraction and first repulsion are predicted.

In many colloidal systems, these expressions can be sim-

plified greatly. For example, if the macromolecule concen-
tration is sufficiently dilute, then we can assume that both
E,, andU,,_,, are independent of the bulk number density.

Second, for relatively weak or short-range potentials (such
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Applying these approximations leads to the following ex-
pression for the interparticle depletion force

Fi(rio) = _/Ph eXP{—[Em—pl(rl) + Em—pz(rz)]}
ri

(4)

/ -
x {exp[— } - 1} dr’,  (5)

wherery = |r1|, rp =|r1 —riz|, andE,,_,1 andE,,_ > de-
note the interaction energy between a macromolecule and
particles 1 and 2, respectively.

Once the force is known, the corresponding depletion en-
ergy, E1(r12), characterizing the interaction between two
particles can be calculated as

x [1+b2(r1,r2) [V1Em_p1(r) dra,

where

ba(ry,r2) Z/{exp[_ En—p1(ry) + En—p2(r2)

kT

Um—m(lr/ - r1|)
kT

r12

Ei(rio) = —/Fl(fllz) ~dr,.

e¢]

(6)

Note that for spherically symmetrical systems, such as those
considered below, the depletion enerdy, and the mag-
nitude of the depletion forcefy, will depend only on the
distance between particles 1 and-2.

Walz and Sharma made one additional approximation to
simplify the calculation of the second virial coefficient and
decrease the time required for the numerical integrations.
This approximation involves rewriting Eq. (5) as

ot
oo

Em—pl(rl)

ba(ry,r2) = T

Um—m(lr/ 1))

kT
Em—pZ(rZ)
+/{exp[—T} — 1}
r/
X {exp[—%;_m):”dr’. (7)

as in hard-sphere systems), we can approximate the potenEssentially, this approximation, which is demonstrated more
tial of a macromolecule interacting with two particles as the clearly in the following section, assumes that the effects of
sum of the individual particle-macromolecule interactions. a macromolecule interacting with two particles simultane-
Also, because of the spherical symmetry, the potential of a ously can be calculated as the superposition of the effects of
macromolecule located at position relative to a particle ~ each particle—macromolecule interaction. In the remainder
will depend only on the distance between the particle and of this paper, we will analyze the validity of this approxima-
the macromolecule;. tion.
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(@ (b)

Fig. 1. These figures illustrate the physical meaning of the second virial co- ¢
efficient for a macromolecule of radiusinteracting with either a single .
wall (a) or two parallel walls (b). In (a), the value of the second virial coef-
ficient is the volume of the hatched region. In (b), the total virial coefficient

is the sum of the volume of the two hatched regions.

3. Resultsand discussion

(b)

3.1. The calculated second virial coefficient
.. - . Fig. 2. These schematics illustrate the second virial coefficient for a macro-
The second virial coefficient has units of volume, and the molecule interacting with two spherical particles of rad®sIn (a), the
physical meaning of this parameter can be easily understoodotal coefficient is the sum of the hatched regions. In (b), however, simply
by considering a system where all interactions are of the hardsumming the virial coefficient for each particle—macromolecule interaction
sphere type. Nowg,, andU,,_,, in Eq. (2) will be zero at results in oyerpredicting the total coefficient by the amount of the cross-
all separations beyond hard contact and positive infinity at "3ched region.
contact. Let us first consider the simple case of a spheri-
cal macromolecule of radius next to a flat wall, shown in ~ ways valid, as the hatched regions in Fig. 2 will themselves
Fig. 1a. Each macromolecule excludes a spherical volumenever overlap, which is consistent with Glandt [4].
of radius 2 from the center of other macromolecules. The  On the other hand, if the parallel walls are instead re-
region within distance: < 2a is excluded from the macro-  placed by two hard spherical particles of radRisas shown
molecules as well. When a macromolecule approaches sufin Fig. 2a, then such a general statement cannot be made.
ficiently close to the wall so that these excluded volumes Specifically, because the second virial coefficient at any
overlap, the total excluded volume in the system is reducedpoint in the solution now depends on both the distances
by the volume of the hatched region in Fig. 1a, which is en- from the two particles and the distance from the center-to-
ergetically favorable in a hard-sphere system. The volume center line between the two particles, the validity of the su-
of this hatched region is the second virial coefficient and perposition approximation depends on position as well. For
this increase in the total free volume of the system results in example, for macromolecules located along the center-to-
a higher concentration of macromolecules close to the wall center line, the additivity approach will always be true (anal-
relative to the bulk. ogous to the case of two parallel walls). The largest discrep-
Now consider the case of macromolecules in the gap ancy, on the other hand, occurs in the arrangement shown in
region bounded by two parallel walls separated by gap Fig. 2b, in which the macromolecule is touching both parti-
width £, as shown in Fig. 1b. The issue here, which is es- cles, which are themselves in contact. As can be seen, simply
sentially the approximation made by Walz and Sharma, is adding the volumes of the overlap regions of the macro-
whether the virial coefficients for this system can be calcu- molecule with each particle overpredicts the true change in
lated as the simple sum of the coefficients for each wall, or excluded volume by the amount shown in the crosshatched
specifically isb2(x) = bo.wall 1(x) + b2.wal 2(h — x). Geo- region. Using straightforward geometry, we have calculated
metrically, the question is whether the total change in ex- the volume of this crosshatched region for the particular
cluded volume is equal to the sum of the changes next to arrangement shown in Fig. 2b and we present these results
each wall. For the simple case of two parallel plates, it is not in Fig. 3. This graph plots the volume of the crosshatched
difficult to see that this superposition approach is in fact al- region divided by the true change in the excluded volume
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Fig. 3. This graph gives the maximum error in the second virial coefficient Fig. 4. This graph plots the dimensionless depletion energy between two
produced by the superposition approximation of Eq. (7). The arrangement spherical particles of radiug in a solution of spherical macromolecules of

of the particles and macromolecule is as shown in Fig. 2b, ang-tes radiusa and bulk volume fractiorp, versus the dimensionless gap width.
here is the volume of the crosshatched region in Fig. 2b divided by the true For each plot, the solid line was calculated using the exact virial coefficient
second virial coefficient. AR /a — oo, the system approaches that of two  expression of Eq. (5), while the symbols were calculated using the superpo-
parallel plates (Fig. 1b), where the approximation is completely valid and sition approximation of Eq. (7).

the error is zero.

The Walz and Sharma model can also be applied to sys-
(i.e., the maximum fractional error in the second virial coef- tems in which the particles and macromolecules experience
ficient produced by the superposition approximation) versus longer-range (i.e., “soft”) interactions. Perhaps the most rel-
the ratio of the particle to the macromolecule radii. As seen, evantfor aqueous systems is the screened coulombic interac-
the error is greatest when the macromolecule and particletion between surfaces bearing a net electric charge. A conve-
are of equal size and drops to zeroR4&: — oo. This lat- nient electrostatic interaction expression that can be applied
ter result is expected, @ = oo corresponds to the case of 10 particles of essentially any size is the linear superposition
a macromolecule between two parallel plates, where the ap-expression of Bell et al. [12]. For two spherical particles of
proximation is exactly valid and the fractional error is zero. radiusa; andaj, the interaction energy is

aiaj

2
3.2. The predicted depletion interaction Eeledr) =4718r80<k7T) YiY; p
We now investigate the effect of the superposition ap- x exp[—r(r —a;i —a))], (8)
proximation for calculating the second virial coefficient on wherer is the center-to-center distance between the spheres,
the depletion interaction predicted with the Walz and Sharma ¢, is the relative dielectric constant of the mediumjs the
model. First, we consider a system in which all interactions permittivity of free spacee is the electron charge;, ! is
are of the hard-sphere type. Shown in Fig. 4 is the energy ofthe solution Debye length, anid andY; are the effective
interaction between two hard spherical particles of radius  surface potentials of particlésand j, respectively (the defi-
in a solution of hard spherical macromolecules of radius nition of the effective surface potential is given in Bell et al.).
(R/a = 100 for this system) and bulk number density The major requirement in using this expression is that the
as a function of the dimensionless gap widthu, where gap width between the interacting spheres is greater than the
h = r12 — 2R. Results are shown at three different macro- bulk Debye length (i.exh > 1, whereh =r —a; —a;). The
molecule volume fractionsi= 1, 3, and 10%) and the en-  validity of this equation for calculating the depletion interac-
ergies have been scaled by the fa¢®)12)pk T (R /a), which tion is discussed by Piech and Walz [3].
is the approximate value of the classic Asakura—Oosawa de- To test the validity of the superposition approximation of
pletion interaction at contact whe®i>> a [11]. As seen, at  Eq. (7), we considered two systems, differing in the value
all volume fractions, the energies calculated using the ap- of ka. Each system consists of 1.5-um radius particles and
proximation of Eq. (7) (represented as the symbols) are es-10-nm radius macromolecules. The electric surface poten-
sentially identical to those calculated using the complete ex- tial on the particles and macromolecules-i§0 mV, and
pression of Eq. (5) (represented as lines). Thus even thoughthe macromolecule concentration is 0.35%. The bulk Debye
the maximum error shown in Fig. 3 can be significant, inte- length is 3 nm in system 1 and 15 nm in system 2, corre-
grating over all possible macromolecule positions leads to a sponding taca values of 3.33 and 0.667. For each of these
substantially smaller error. systems, we can also calculate the effective macromolecule
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0 (@) teeeceoeoe fective Asakura—Oosawa contact ener@gy/2)¢p*kTR/a.
(Note that this effective size is used only in scaling the sep-
aration distance and resulting energy; the calculation of the
interaction energy was made using the actual electrostatic
- - interaction expression given in Eq. (8).) As seen, in both
o i’r‘,r‘frgf(‘l‘af2::‘;3{';333:"2‘1:(][3?“On - systems, the energies calculated using the approximate sec-
ond virial coefficient expression of Eq. (7) (symbols) are in
. ! . | s very good agreement with those calculated using the exact
0 1 2 3 approach of Eq. (5) (lines). Specifically, at the smallest sep-
hla* arations, the error between the two methods is less than 2%.
. These results show clearly that the superposition approxi-
00 e mation can be employed in systems with long-range interac-
tions as well.

E/ (312)0*kTR/a*

-0.5

4. Conclusions

E/(3/2)0*kTRla*

— Exact calculation (equation [5])
—e— Approximate calculation (equation [7]) |

We have examined the validity of an approximate method

15 . 1 : for calculating the second virial coefficient for a macromole-

0 2 4 cular solution bounded by two interfaces. Specifically, the

hla effect of the approximation on the depletion interaction be-

Fig. 5. These graphs show the interaction energy calculated with the Walz tween two spherical particles was examined in systems with
and Sharma model in a solution with long-range electrostatic interac- both hard-sphere and long-range interactions. In all systems
tions. The sizes of the particles and macromoleculeskRarel.5 um and studied, the results calculated with the approximate model

a =10 nm, respectively, and both the particles and macromolecules have\yere found to be in good agreement with those obtained
electric surface potentials 6f50 mV. In (@)x —* = 3 nm anda* = 23.2

nm, while in (b),«~1 = 15 nm anda* = 76 nm. As in Fig. 4, the solid Uilng an exact e;<pr1r§35|on fO!’ the second VI!]I’I.a| co'efﬁ.(;!ent.

line was calculated using Eg. (5), while the symbols were calculated with T e advgntage of this aPprQX'mate approac IS asigni 'C.ant

Eq. (7). savings in the computation time required to calculate the in-
terparticle depletion interaction.

volume fraction, which utilizes an effective macromolecule ~ These results also showed that the expression for predict-

size given by [13] ing the depletion interaction in purely hard-sphere systems
can also be used in dilute ionic systems, provided the ap-

., 1 °° —Ep—p(r) ) propriate effective macromolecule size is used. This can be
a = 5/ 1- eXD[T} dr’, 9) seen by the similarities between the curve at 1% volume in
0 Fig. 4 (purely hard-sphere system) and the curve in Fig. 5a

whereE,,_, (') is the energy of interaction between a par- (charge_zd system). Specifically, the spaled at.tractive energy is
ticle and a macromolecule separated by center-to-center dis_applroglmatelygl a;.ccintact an the |n.tera}[ct||02 e_i_(;]eng.s toa
tancer’. Essentially, this effective size accounts for the range sca'ed separation distance of approximately <. The discrep-

of the electrostatic repulsion between the individual macro- ?rg%i‘:‘]gg?egszisviﬁz f)(raggrIgot:fe(r:\ltjrr;/t(iac?nn;?fglctztznvnvqr?iglﬁl
molecules. Using this expression yields effective macro- '

molecule radii of 23.2 and 76 nm for systems 1 and 2 are not included in the scaling factors. In addi.tion., this sqal-
respectively. It should be mentioned that Eq. (9) was de,- ing demonstrates that for the gttrgctlve depleuon interaction,
. ) : . : the correct macromolecule size is determined by the range
r|veq assurplnghshort-range_|r;]te1rSactlon[S) atr;d |s| thushorlgl_y aﬁ'of the interaction between the particles and nonadsorbing
proximate for the system wit nm Debye length. Piec : . .
and Walz [14] showed that the effective thickness of the trgsacégaoéeeiwzzrﬁﬁegxzr;rlgniﬂ-et(:?J)Itsatigrazzfvegsto the in-
charged double layer could also be calculated as the particle— '
macromolecule gap width where the electrostatic repul-
sive energy between the particle and macromolecule equalsA
0.5kT. Using this approach yields effective macromolecule
sizes of 23.8 and 77.8 nm for the 3- and 15-nm Debye length  This work was supported by the US National Science
systems, respectively, which are very close to the values ob-gqndation (Grant CTS-9912098).
tained by Eq. (9).
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two systems are shown in Fig. 5. The gap width between References
the particles:, is scaled by the effective macromolecule
radius,a*, and the interaction energy is scaled by the ef- [1] P. Jenkins, M. Snowden, Adv. Colloid Interface Sci. 68 (1996) 57.

cknowledgment



332 P. Weraiski, J.Y. Walz / Journal of Colloid and Interface Science 263 (2003) 327-332

[2] J.Y. Walz, A. Sharma, J. Colloid Interface Sci. 168 (1994) 485. [9] M. Lozada-Cassou, E. Diaz-Herrera, J. Chem. Phys. 93 (1990) 1386.

[3] M. Piech, J.Y. Walz, J. Colloid Interface Sci. 225 (2000) 134. [10] D. Henderson, M. Lozada-Cassou, J. Colloid Interface Sci. 114 (1985)

[4] E.D. Glandt, J. Colloid Interface Sci. 77 (1980) 512. 180.

[5] B. Groh, S. Dietrich, Phys. Rev. E 59 (1999) 4216. [11] S. Asakura, F. Oosawa, J. Chem. Phys. 22 (1954) 1255.

[6] A. Sharma, J.Y. Walz, J. Chem. Soc. Faraday Trans. 92 (24) (1996) [12] G.M. Bell, S. Levine, L.N. McCartney, J. Colloid Interface Sci. 33
4997. (1970) 335.

[7] A.J. Milling, J. Phys. Chem. 100 (1996) 8986. [13] J.A. Barker, D. Henderson, J. Chem. Phys. 47 (1967) 4714.

[8] Y. Mao, J. Phys. Il France 5 (1995) 1761. [14] M. Piech, J.Y. Walz, Langmuir 16 (2000) 7895.



	An approximate method for calculating depletion and structural interactions between colloidal particles
	Introduction
	Theory
	Results and discussion
	The calculated second virial coefficient
	The predicted depletion interaction

	Conclusions
	Acknowledgment
	References


