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Localized adsorption of hard~noninteracting! spheroidal particles on homogeneous interfaces was
analyzed theoretically. In contrast to previous studies concentrated on flat~side on! adsorption in the
present approach an unoriented~quasi-three-dimensional! adsorption of prolate and oblate spheroids
was considered. By applying the random sequential adsorption~RSA! approach asymptotic analytic
expressions were derived for the available surface function~surface blocking parameter! and
adsorption kinetics in the limit of low and moderate surface concentrations. The range of validity of
the approximate analytical results was determined by numerical simulations of adsorption kinetics
performed using the Monte Carlo RSA technique. It was revealed by this comparison that the
analytical approximation can be used with a good accuracy for the dimensionless adsorption timet
smaller than two. The numerical calculations also enabled us to determine the maximum~jamming!
surface concentrations for unoriented adsorption of spheroids as a function of the elongation or
flattening parameterA. It was demonstrated that these jamming concentrationsu` are approached
for long adsorption times ast21/4, therefore deviating considerably from the Langmuir model used
often in the literature. ©1996 American Institute of Physics.@S0021-9606~96!51536-9#

I. INTRODUCTION

The adsorption of colloid and bioparticles is of large
practical significance in various technologies involving fil-
tration steps. Learning about the mechanisms and kinetics of
these phenomena is also relevant for polymer and colloid
science, biophysics, and medicine, enabling a better control
of protein and cell separation processes, enzyme immobili-
zation, thrombosis, biofouling of transplants and artificial or-
gans, etc.

It is known that the shape of surfactant molecules and
bioparticles deviates significantly from perfect spheres ana-
lyzed usually in various theoretical and experimental studies
of adsorption kinetics. Thus, for example, the blood platelets
can be treated as oblate spheroids~disks! having a rather
irregular cross-section area. On the other hand the shape of
important globular proteins like bovine serum albumin
~BSA!1 or fibrinogen2–4 resembles prolate spheroids with the
axis ratio about 3.5 and 5–7, respectively. The same con-
cerns E. Coli bacteria having the shape of a prolate spheroid
with the axis ratio of about two.5

Other examples of highly anisotropic particles~usually
of platelet form! are the clay mineral, e.g., kaolinite and
montmoryllonite, pigments, and synthetic inorganic colloids:
gold, silver iodize, silver bromide, barium sulfate, hafnium
oxide, etc.6–8 Also, model polymeric colloid systems of non-
spherical monodisperse particles~e.g., Teflon™ or polysty-
rene latexes! often occur in practice.9

It has been experimentally observed10–12 that adsorption
of bioparticles and colloids is essentially irreversible and lo-
calized due to attractive dispersion and electrostatic interac-

tions with the interface. The accumulation of particles at in-
terfaces due to these interactions is of a limited extent,
however, due to the occurrence of the volume excluded ef-
fects ~also called surface blocking effects!. Thus, both the
kinetics of particle adsorption and the maximum surface con-
centration ~jamming concentration! are influenced by the
magnitude of the particle–particle repulsive interaction. In
some cases, e.g., for concentrate electrolytes, the extent of
these interactions can be effectively reduced to values which
are negligible in comparison with particle dimensions. Then,
the adsorbing particles can be treated as interacting via the
hard particle potential and their adsorption can be described
in terms of simple models, the most widespread being the
random sequential adsorption~RSA! approach.13–18The ba-
sic assumptions of the model are as follows:

~i! Particles are placed at random on a target~interface!
of an isotropic character, i.e., every position on the
target is statistically equivalent.

~ii ! If the adsorbing particle overlaps with any pread-
sorbed particles it disappears with unit probability.

~iii ! Otherwise the particle is assumed adsorbed at a given
point over the target; once the particle is adsorbed its
position~and orientation! is permanently fixed~local-
ized, irreversible adsorption!.

~iv! The process is continued until the entire surface is
completely covered and no more particles can be ac-
commodated, thus the ‘‘jamming’’ or maximum park-
ing limit is attained characterized by the surface con-
centrationu` .

Despite the simplicity of the underlying assumptions the
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topology of particle distributions generated in RSA processes
becomes complex for higher surface concentrations and can-
not be analyzed in terms of the well-founded Markoff chain
theory. As a consequence of the perfect ‘‘memory’’ of the
RSA sequences, no exact analytical description valid for the
entire range of surface concentrations has been formulated
yet except for the one-dimensional case~adsorption on a
line!.18

For the two-dimensional~2D! adsorption, discrete lattice
models were often used17 enabling one to derive series ex-
pansions for adsorption kinetics and the available surface
function ~ASF!.

On the other hand, Tarjuset al.16 formulated a system-
atic description of continuous RSA processes of arbitrary
dimensionality using the distribution function approach. This
allowed them to derive a Kirkwood–Salsburg-type hierarchy
for the ASF functions which was then solved in terms of
diagramatic expansions valid for low and moderate concen-
trations. The formalism is supposed to be valid for aniso-
tropic particles as well, although no explicit results were
given.

A complete description of a continuous RSA process in
two and three dimensions~3D! was achieved by using Monte
Carlo type computer simulations. In this way both the ad-
sorption kinetic~determined by the available surface func-
tion f! and the maximum concentration~2D and 3D! for
hard13–15,19 and interacting12,20,21 spherical particles have
been numerically determined.

On the other hand, the RSA results for nonspherical par-
ticles are rather scarce and concern exclusively the two-
dimensional~2D! cases, i.e., particles were assumed to ad-
sorb with the symmetry axis oriented parallel to the interface
~side-on adsorption!. In this way adsorption of cubes~more
precisely squares! and cylinders~rectangles! was considered
in Refs. 22, 23, and 24, respectively. Talbotet al.25 analyzed
systematically in terms of the RSA method both the kinetics
and maximum jamming concentrations of spheroids~el-
lipses! of various aspect ratios ranging from 0.8 to 0.2. The
jamming limit, the high and low coverage asymptotic ad-
sorption behavior of cylinders, spheroids, and spherocylin-
ders was also determined in precise RSA simulations per-
formed in Refs. 26 and 27.

The 2D adsorption of spheroidal particles interacting via
the screened electrostatic interactions was recently studied in
Refs. 28 and 29.

To our knowledge, no numerical results were reported in
the literature for the important case where anisotropic par-
ticles can undergo adsorption not only side on but also under
arbitrary orientation of the symmetry axis relative to the in-
terface. This adsorption regime, referred to for sake of con-
venience as the three-dimensional~3D! regime, seems perti-
nent to surfactant and protein adsorption when the rotation of
the molecules becomes inhibited upon contact with the inter-
face due to, e.g., electrostatic interactions.

Thus, the main goal of our paper is to fill this gap by
developing the RSA model for the 3D adsorption of spheroi-
dal particles, either of prolate~elongated! or oblate ~flat-
tened! shape. Both the adsorption kinetics and the maximum
jamming concentrations shall be determined in relation to
particle geometry. Also analytical expressions in the form of
the low density expansion are formulated. Preliminary re-
sults obtained for elongated spheroids have been presented in
our previous work.30

II. THE LOW DENSITY EXPANSION

Let us consider the random sequential adsorption~RSA!
of hard spheroidal particles at a homogeneous interface
whose surface areaDS for the sake of convenience is nor-
malized to unity~cf. Fig. 1!. The basic assumptions of our
model are as follows.

~i! Each particle can adsorb under arbitrary orientation
which is uniquely defined by the orientation vectorê
~see Fig. 1!; for prolate spheroidsê is directed parallel
to the longer axis 2a and for oblate spheroids parallel
to the shorter axis 2b.

~ii ! Adsorbed particles form a rigid, physical contact with
the interface, i.e., the surface to surface distances
equal zero and their orientations and contact positions
become time independent~localization postulate!.

~iii ! The interface is microscopically homogeneous which
means that adsorption probability density has a con-
stant and continuous value over the entire interface.

Let the RSA process proceed for some time so there are
N particles adsorbed at the interface under arbitrary positions
~characterized by the surface position vectors measured rela-
tive to a space fixed coordinate systemr1, r2,...,rN! and ori-
entations, characterized by the vectorsê1, ê2,...,êN , ~cf. Fig.
1!. The probabilitypv of adsorbing an additionalN11 par-
ticle ~referred to as the virtual particle! having the orientation
êv somewhere at the interface is then given by

pv5Sav/DS512Sex/DS512Sex, ~1!

whereSav is the available~unblocked! surface area over the
interface where the virtual particle center can be located and
Sex is the excluded~blocked! area.

Obviously, the probabilitypv defined by Eq.~1! depends
not only onêv but also on the size of the particle relative to
the size of the adsorption plane and positions and orienta-
tions of allN preadsorbed particles. In principlepv can be
calculated for a given system from the double integral:

FIG. 1. A schematic representation of the 3D random sequential adsorption
of spheroidal particles on a planar interface.
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pv5E Hv~hm!dr v , ~2!

whereHv is the Heaviside unit step function andhm is the
minimum surface to surface distance between particles.

In order to get rid of the troublesome dependence ofpv
on the size of the system and the boundary conditions at the
edges of the simulation plane, one has to consider large par-
ticle populations or take ensemble averages from many
smaller sized surface elements. In this limit the averaged
probability p̄v can be identified with the available surface
functionf3, i.e.,

f~ êv ,N!5 p̄v .

An explicit analytical calculation off by evaluating the
double integrals as defined by Eq.~2! is not feasible because
the statistical properties of the RSA processes are not known
a priori. Exact calculation off can only be performed nu-
merically using the Monte Carlo simulation technique as dis-
cussed later on.

However, useful approximations can be derived in the
limit of low surface concentrations when exploiting the re-
sults of Schaaf and Talbot,15 who showed that for hard
spherical particles~of radiusa! the ASF can be expressed in
the form

f~N!512S11S22S31••• ~3!

with

Sn5
1

n! E E •••E An~r1 ,...,rn!

3r~n!~r1 ,...,rn ,N!dr1 ,...,drn ,

whereAn are the common~overlapping! areas of the exclu-
sion circles~drawn around each adsorbed particle by rotating
the virtual particle by the angle 2p!, A154pa2 is equal to
the area excluded by a single particle, andr (n)5Nng(n) are
the n-particle generic distribution functions~g(n) are the
n-particle distribution functions!.

For spheroidal particlesf is dependent not only onN
but also on the orientation vectorêv , i.e.,

f~ êv ,N!512S1~ êv ,N!1S2~ êv ,N!2S3~ êv ,N!1••• ,
~4!

with Sn to be calculated from the multiple integrals over
positions and orientations

Sn~ êv ,N!5
1

n! E E •••E An~r1 ,...,rn ,ê1 ,...,ên ,êv!

3r~n!(r1 ,...,rn ,ê1 ,...,ên ,N)dr1...drn~dê1/2p!...~dên/2p!

(5)

5un
1

Sg
nn!

E E •••E Ang
~n!dr1...drn

3~dê1/2p!,...,~dên/2p!,

whereu5N Sg is the dimensionless surface concentration of
adsorbed particles andSg is the scaling area, e.g., one of the
geometrical cross sections of a spheroid.

As mentioned, Tarjuset al.16 presented a more general
approach aimed at expressingf ~and analogous functions for
multiplets! in terms of power series expansion ofu. The
coefficient of this expansion can be calculated from Mayer
diagrams similar to the virial coefficients. However, the
Mayer functions and the correlation functions for spheroidal
particles are difficult to express explicitly in terms of particle
center to center distances and particle orientations.31 More-
over, for elongated objects there appear to be problems with
the cancellation of various diagrams.32 Therefore, we think
that the approach adopted above based on calculating exclu-
sion and overlapping areas for various particle configurations
is more convenient for this particular problem.

Knowing the available surface functionf for a given
orientation of the virtual particle one can describe the kinet-
ics of irreversible adsorption of spheroids by generalizing the
integral equation given by Viotet al.26

dN

dt
5E ka~ êv!gv

~1!~ êv!f~ êv ,N!~dêv/2p!, ~6!

whereka is the adsorption rate constant~the transfer rate of a
particle for a given orientation from the bulk to the
interface12! andgv

(1) is the orientational distribution function
of the adsorbing particle.

An explicit formulation of Eq.~6! in the general case
seems rather cumbersome. However, for many practical situ-
ations one can assume with a good accuracy that both the
adsorption rate constantka andgv

(1) are independent of the
orientation vectorêv ~as is the case, for example, in the ab-
sence of external force field orienting particles!. Under such
circumstances Eq.~6! simplifies to the form used
previously14,15,26,27

dN

dt
5kaf̄~N!, ~7!

where f̄(N)5*f~êv ,N! ~dêv/2p! is the orientation aver-
aged ASF.

Moreover, in the limit of low densities, assuming a qua-
sirandom distribution of particles,16,27one can formulate Eq.
~7! by using the expression forf, Eq. ~5! in the concise
dimensionless form

du

dt
512C1u1C2u

210~u!3. ~8!

t5Sgka t is the dimensionless adsorption time andC1 and
C2 are the dimensionless constants~independent ofu and the
orientation angles! given by

C15^A1&/Sg ,
~9!

C25
^A2&
2Sg

,

where
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^A1&5
2

p3 E
0

2p

da1vE
0

p/2

db1E
0

p/2

A1~a1v ,b1 ,bv!dbv ,

^A2&5
2

Sgp
5 E

0

2p

da12E
0

2p

da1vE
0

p/2

db1E
0

p/2

db2

3E
0

p/2

dbvE A2~a12,a1v ,b1 ,b2 ,bv ,r12!dr12

are the averaged excluded and overlapping areas, respec-
tively, and r125r12r2 is the center to center vector of the
particle pair ~the remaining coordinates occurring in this
equation are defined in Fig. 2!.

The excluded areaA1 can be calculated from the surface
integral

A15E @H~hm!21#dr v , ~10!

andA2 5 A1ùA18 is the common~overlapping! area@see Fig.
2~b!#.

Considering this definition one can deduce by perform-
ing a dimensional analysis that theA2 dr12 integral occurring
in Eq. ~9! should be of the order ofA1

2;^A1&
2. Consequently

the ratioC1
2/C2 should be constant.

Moreover, as shown by Tarjuset al.16 and Ricciet al.27

the above defined constantsC1 and C2 characterizing the
RSA process are identical to equilibrium adsorption systems

and are, therefore, connected with the secondB2 and the
third virial coefficientsB3 through the dependencies

C152B2 ,
~11!

C252B2
22 3

2B35qC1
2,

where

q5
1

4 S 22
3

2

B3

B2
2D

is the dimensionless constant.
We have retained only the three terms of the series ex-

pansion Eq.~8! for two reasons.

~i! Inclusion of higher terms leads to complicated inte-
grals of high dimensionality whose evaluation be-
comes more involved than direct Monte Carlo calcu-
lations of f̄.

~ii ! A simple analytical equation for adsorption kinetics
can be derived when considering the three terms only.

It seems that the integrals occurring in Eq.~9! cannot be
evaluated analytically except for the case of spheres, when
^A1&54pa2, ^A2&512)a2, which gives forC1 andC2 the
simple expressions~when usingSg5pa2 as the scaling vari-
able!

FIG. 2. ~a! The excluded areaA1 for the two spheroid configuration: one adsorbed~shadowed! and adsorbing~virtual! depending on the orientation anglesb1,
bv , anda1v. ~b! The excluded areasA1 andA18 and the overlapping areaA2 5 A1ùA18 for the three-spheroid configuration: two adsorbed~shadowed! and one
adsorbing~virtual!.
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C154,

C25
6A3
p

.

Similarly, for the flat orientation of spheroids one can
expresŝ A1& analytically as

32,33

^A1&52pab1
P2

2p
, ~12!

whereP is the perimeter of the ellipse given by the complete
elliptic integral of the second kind. In the limit whenb/a
5A→0 ~needlelike objects! one can deduce that
^A1&→8a2/p.32 Then, usingpab as the scaling variableSg
one can show that theC1 constant for ellipses diverges ac-
cording to 8/(p2A). As a consequence of Eq.~11!, C2 di-
verges also asq 64/(p4A2). Theq constant was determined
by Tarjuset al.32 to be 0.307 by performing tedious analyti-
cal integrations.

It seems that for 3D adsorption of spheroids any analyti-
cal solutions are difficult to find even in the limiting case
whenA→0. It can be easily estimated, however, by consid-
ering various configurations of two prolate spheroids that in
this limit ^A1&;pab ~e.g., for one spheroid lying side on
and the other oriented perpendicular to the adsorption plane
A1→pab, for A→0!. Unlike the 2D case,̂A1& is supposed
to depend not only on the length of the objects but on its
geometrical shape and should, therefore, be different for thin
cylinders or spherocylinders.

Choosing againSg5pab as the scaling variable one can
estimate that for the 3D caseC1 approaches a constant value
of the order of unity in the limit of very thin objects.

On the other hand, for oblate spheroids one can estimate
that ^A1&;a2, which suggests that usingSg5pa2 as the
scaling variable one should obtain a constant value ofC1 in
the limit of A→0 ~thin disks!.

In general the multiple integrals occurring in Eq.~9! can
only be evaluated numerically. In order to calculateC1 one
has to evaluate fivefold definite integrals and forC2 ninefold
integrals. Due to the high dimensionality of these integrals
the usual numerical integration schemes~e.g., the general-
ized Simpson method! are totally inefficient, especially for
smaller values ofA. Therefore, we calculated these multiple
integrals by applying the standard Monte Carlo method34

which is based on the relationship

E
DV

VdV5^V&DV, ~13!

whereDV is the space element~of arbitrary dimension! for
which the multiple integral should be evaluated and

^V&5
1

Nt
( Vn

is the averaged value of the functionV within the space
elementDV determined fromNt trials generated at random
with uniform probability.

The results of numerical calculations of theC1 constant
performed according to the above Monte Carlo integration

method for prolate spheroids characterized by various elon-
gations are plotted in Fig. 3. In order to facilitate the com-
parison of the our 3D results with the well-studied case of
the 2D ~flat! adsorption we have chosenSg5pab, i.e., the

FIG. 3. ~a! The dependence of theC1 constant on theA5b/a parameter
determined by the MC-RSA simulations~points! for prolate spheroids:~1!
2D adsorption~flat orientation!; ~2! 3D adsorption. The continuous line
denotes the values derived from the interpolating functions given by Eqs.
~14! and ~15!. ~b! The dependence of theC2 constant on theA parameter
determined by the MC-RSA simulations~points! for prolate spheroids:~1!
2D adsorption;~2! 3D adsorption. The continuous line denotes the values
derived from the interpolating functions given by Eq.~15! ~3D adsorption!
and in Ref. 29~2D adsorption!.
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surface area of the major ellipse as discussed previously. As
can be seen in Fig. 3, in contrast to the 2D case for the 3D
adsorption the value ofC1 decreased monotonically withA
attaining 2.08 forA50.01 ~the lowest value of this param-
eter used in our calculations!.

It was found that the simplest polynomial which re-
flected well our simulation data had the form

C152.0710.811A12.37A221.25A3. ~14!

As can be deduced, forA51 this expressions matches the
limiting value for spheres equal to 4 and forA→0 ap-
proaches the constant value of 2.07, in accordance with the
estimation presented above. This value can, therefore, be
treated as the extrapolated jamming limit for spheroidal
needles.

By comparison, for the 2D adsorptionC1 was described
by the approximate formula29

C15
4~p224!

p2 1
8

p2 SA1
1

AD . ~15!

In this caseC1 diverges in the limit of very elongated sphe-
roids as 8/(p2A). Note that for cylindersC1→2/(pA) in this
limit.

This prediction has practical significance, indicating that
under 3D adsorption conditions the surface blocking effects
are much less pronounced for elongated objects in compari-
son with the flat adsorption.

The dependence of theC2 constant on theA parameter
calculated numerically by the Monte Carlo integration of Eq.
~9! is plotted in Fig. 3~b!. The continuous line in Fig. 3~b!
represents the results calculated from the fitting function
given by

C25
3.88A220.301A10.670

A10.283
. ~16!

Again, the limiting value for spheres equal to 6)/p53.31 is
matched whereas forA50, C2 approaches the constant
value of 2.36.

Analogous calculations performed for the oblate sphe-
roids are shown in Figs. 4~a! and 4~b!. In order to relate the
3D results to flat adsorption we have assumedSg5pa2, i.e.,
the surface area of the major circle. As can be seen in Fig.
4~a! for the oblate spheroids theC152B2 constant decreases
monotonically with decreasingA and attains forA50.0001
~the lowest limit of our simulations! a value of 1.60, i.e.,
slightly smaller than for the prolate spheroids. It has been
found thatC1 for oblate spheroids can be well approximated
by the simple polynomial ofA,

C151.5912.80A20.388A2. ~17!

A similar monotonic decrease in theC2 constant with
decreasingA was predicted from the Monte Carlo~MC! cal-
culations as shown in Fig. 4~b!. Thus, theC2 vs A depen-
dence exhibits no minimum in contrast to the prolate spher-
oid case. The interpolating function forC2 was found to be

C250.70011.83A10.776A2. ~18!

Knowing the constantsC1 andC2 one can integrate Eq.
~8! analytically obtaining the explicit kinetic equation con-
necting the dimensionless surface concentration with the di-
mensionless adsorption timet. When 4C2/C1

2,1 the solu-
tion becomes

u~t!5u1
12exp~2pC1t!

12
u1
u2

exp~2pC1t!

, ~19!

where

FIG. 4. ~a! The dependence of theC1 constant onA determined by the
MC-RSA simulations~points! for oblate spheroids. The continuous line de-
notes the values derived from the interpolating function given by Eq.~17!.
~b! The dependence of theC2 constant on theA parameter determined by
the MC-RSA simulations~points! for oblate spheroids. The continuous line
denotes the values derived from the interpolating function given by Eq.~18!.
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u15
C1

2C2
@12p#,

u25
C1

2C2
@11p#,

p5S 12
4C2

C1
2 D 1/2.

On the other hand, if 4C2/C1
2.1 and

p5S 4C2

C1
2 21D 1/2,

the solution assumes the form

u~t!5
2

C1p

tang12C1pt

F11
1

p
tangS 12 C1pt D G . ~20!

It should be mentioned that using the Langmuir model
with the ASF given by 12u/uL ~whereuL is the empirical
‘‘monolayer’’ concentration! one can derive the following
kinetic equation:

u~t!5uL~12e21/uLt!. ~21!

Equations~19! and ~20! are supposed to accurately de-
scribe the adsorption kinetics of spheroidal particles in 3D in
the limit of low and moderate surface concentrations.

It should be noted that these equations are applicable for
equilibrium adsorption as well since they were derived using
the first three terms of the ASF expansion which are identical
for RSA and equilibrium situations.16

However, an exact estimation of the range of validity of
Eqs. ~19! and ~20! can only be achieved in terms of the
MC-RSA simulations as described in Sec. III.

III. RESULTS OF NUMERICAL SIMULATIONS

The MC-RSA simulation algorithm. The algorithm of the
RSA simulations of 3D adsorption of spheroids was analo-
gous to that described previously for the 2D case12,28,29and
consisted of the two main calculation modules repeated in a
loop.

~i! The virtual ~adsorbing! particle was created having
the surface coordinates (xv ,yv) and the orientation
av , bv relative to a space-fixed coordinate system
~the zv coordinate of the virtual particle was deter-
mined by thebv orientation angle via the dependence

z5 Aa2 cos2 bv1b2 sin2 bv!. This was achieved using
a high-quality pseudorandom number generator giv-
ing a uniform distribution of random numbers within
the range 0–1 with minimum sequential correlations.
The size of the square simulation planeDS was nor-
malized to unity and the relative surface area of the
virtual particle S̄g with respect toDS was usually
231024. At the perimeter of the simulation plane the
periodic boundary conditions were applied.29

~ii ! Then, the overlapping test was performed by applying
the Vieillard–Baron overlap criteria for spheroids in
space;35 if the virtual particle did not overlap with any
previously adsorbed particle then it was taken as ad-
sorbed at the point (xv ,yv) with the orientation
av ,bv ~these coordinates were stored and the number
of adsorbed particlesN was increased by one!. If
overlapping occurred then the simulation step was re-
peated and the number of simulation attemptsNatt was
increased by one.

The simulation scheme was repeated until no more par-
ticles could be adsorbed and the limiting~jamming! particle
concentrationu` was attained. This requires, however, ex-
cessively long simulation times so we found it considerably
more efficient to calculateu from a linear extrapolation of
the long time value ofu as discussed later on. Usually, for a
typical value ofA50.2, about 109 simulation attempts were
required for achieving a satisfactory accuracy of determining
u` .

It should be noted that for concentrations close to jam-
ming and for lowerA values some of the available targets
may possess a form resembling ‘‘bottles.’’ This means that
in order to fill these targets as assumed in our model, there
must appear a physical mechanism responsible for the
change of particle orientation. This can be, e.g., the rotary
Brownian motion occurring universally under all practical
situations. Thus, in this respect, our model seems to come

FIG. 5. Kinetics of prolate spheroid adsorption. The dependence of the
dimensionless concentrationu5pabN on the dimensionless adsorption
time t determined numerically~points! for A50.2: ~1! 3D adsorption;~2!
2D adsorption. The continuous line denotes the analytical results calculated
from Eqs.~19! and~20!. The -•- lines denote the results stemming from the
Langmuir model, Eq.~21!.
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closer to reality than those based on the straight line trajec-
tories approach.

Since the RSA simulations are very time consuming~es-
pecially at higher surface concentrations and for elongated
particles! optimization of the overlapping test~which is re-
peated billions of times for each simulation! was a crucial
factor. In order to perform the test as efficiently as possible
we constructed a three-dimensional subsidiary gridP( i , j ,k)
containing the information of which particle~if any! is ad-
sorbed within a given discrete space element~a cubical box
having a size comparable to the spheroid minor semiaxisb!.
Then, the overlapping test was performed more efficiently by
searching within the ‘‘boxes’’ for particles adsorbed in the
vicinity of the virtual particle position.

Adsorption kinetics was simulated using the above cal-
culation scheme by introducing the dimensionless adsorption
time defined as

t5
Natt

Nch
5

Natt

~1/Sg!
, ~22!

whereNatt is the overall number of attempts at placing the
virtual particle andNch51/Sg is the characteristic number of
particles.

Some characteristic results obtained for prolate sphe-
roids and relatively short adsorption times~t,5! are pre-
sented in Fig. 5. Both the 2D and 3D kinetic runs obtained
for A50.2 are plotted together with the analytical results
stemming from Eqs.~19! and ~20!. It can be observed that
the analytical solutions describe well the exact data fort,2.
In contrast, the Langmuir model, giving the kinetic expres-
sion Eq.~21! poorly describes the numerical simulations. It
can easily be noticed from the kinetic data shown in Fig. 5
that the amount of particles adsorbed after a given time un-
der the 3D regime is almost four times larger than for the flat
adsorption. This effect seems to have considerable implica-
tions for protein adsorption kinetics.

In Fig. 6 the influence of the parameterA on adsorption
kinetics of oblate spheroids is plotted including the case of
spheres whenA51. It can again be observed that the ana-
lytical expressions@Eqs. ~19! and ~20!# describe well the
adsorption runs for short times. Also, the decrease inA
~more flattened particles! increased the number of adsorbed
particles.

It should also be noted that the saturation of the kinetic
curves shown in Figs. 5 and 6 is only apparent due to a
considerable decrease in particle adsorption rate for higher
surface concentrations. This is the reason why in adsorption
studies involving bioparticles ~e.g., proteins10! and
colloids11,12 these apparent kinetic saturations were inter-
preted as an indication of true thermodynamic equilibria.
This was probably caused by the limiting time of performing
adsorption experiments~the dimensionless adsorption timet
usually reached values of the order of 10 in these experi-
ments!. If seems that for much longer adsorption times the
‘‘equilibrium’’ concentrations would increase to higher val-
ues. However, performing precise long-lasting adsorption
runs is difficult experimentally.

A further considerable increase of the surface concentra-
tion can be demonstrated theoretically by plotting the MC-
RSA kinetic simulations in an appropriate coordinate system
compressing the infinitet domain into a finite one. As dis-
cussed previously23,27 in RSA processes for long adsorption
times ~t@1! asymptotic regimes are started due to the pres-
ence of isolated targets only~a swiss cheese model!. More-
over, these targets~capable accommodating only one par-
ticle! are selective, i.e., they can be filled by adsorbing
particles of a given orientation only. As a consequence the
asymptotic adsorption kinetics is described by a power-law
dependence with the exponent inversely proportional to the
number of degrees of freedomm

u`2u;t21/m, ~23!

whereu` is the jamming concentration to be determined.
A differentiation of Eq.~23! gives the following expres-

sion for the ASF:

f;~u`2u!m11. ~24!

The validity of this conjuncture was confirmed by
Widom18 for the one-dimensional casem51 ~adsorption on
the line! when u`50.748, by Hinrichsenet al.13 and
others14,15 for the two-dimensional casem52 ~adsorption of
spherical particles on a planar interface whenu`50.547!, for
the flat adsorption of anisotropic particles (m53) such as
squares,23 rectangles,24 spheroids, and spherocylinders,25–27

whenm53, andu` was found to vary between 0.518 and
0.56 depending on theA parameter.

FIG. 6. Kinetics of oblate spheroid adsorption. The dependence of the di-
mensionless concentrationu5pa2N on the dimensionless adsorption timet
determined numerically~points! for variousA: ~1! A50.1; ~2! A50.2; ~3!
A50.5; ~4! A51 ~spheres!. The continuous lines show the analytical results
calculated from Eqs.~19! and ~20!.
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In our case of the 3D adsorption of spheroids one can
define four independent degrees of freedom, i.e., the two
orientation anglesa, b and two spatial coordinatesx,y ~thez
coordinate is determined by the angleb as previously
stated!. This suggests that the simulation results for long ad-
sorption times should be described by a straight line depen-
dence when plottingu vs t21/4. The results in Figs. 7 and 8
seem to confirm this prediction for both prolate and oblate
spheroids. In contrast, the Langmuir model which predicts an
exponential approach of theu` values deviates completely
from the exact numerical simulations fort@1.

It can be deduced, however, that the time of the begin-
ning of the asymptotic adsorption regime increases signifi-
cantly with a decrease of theA parameter~i.e., for vary elon-
gated or flattened particles!.

The existence of the linear regimes~approximated by the
solid lines in Figs. 7 and 8! enables one to determine more
accurately theu` values~jamming limit! by extrapolating the
u vs t21/4 dependencies generated for long adsorption times.
This is advantageous because a direct determination ofu` is
not feasible due to the limited value of computer accessiblet
values equal to about 105 at the most. The monolayers
formed by prolate and oblate spheroids after such adsorption
times are shown in Figs. 9 and 10, respectively. The preci-
sion of the determination ofu` was further increased by
taking averages from many computer runs~usually 20–30
for A,0.2!. In this way a relative accuracy of 1% was at-
tained in most cases.

Theu` values for selectedA are collected in Table I~for

prolate and oblate spheroids, respectively!. Graphically, the
dependence ofu` on A for 3D and 2D adsorption of prolate
spheroids is shown in Fig. 11. The continuous line presents
the fitting function given by

u`50.30420.123A1
0.365

A
~25!

and the broken line denotes theu` values calculated as an
average of a flat orientation and a perpendicular orientation
given by

ū`5
1

2 F0.547A
1u`2D~A!G ,

whereu`2D is the jamming concentration for the 2D adsorp-
tion of spheroids~also shown in Fig. 11!. As can be ob-
served, the numerical value lie well above the averaged
value, which suggests that the orientations close to perpen-
dicular are preferred in the adsorption of elongated spheroi-
dal particles~this can also be deduced qualitatively from the
monolayer coverages shown in Fig. 10!.

Analogous dependency ofu` on A determined numeri-
cally for oblate spheroids~with Sg5pa2 as previously men-
tioned! is shown in Fig. 12 together with the fitting function

FIG. 7. Adsorption kinetics for longer times~MC-RSA simulations for pro-
late spheroids,A50.2! expressed as theu5pabN vs t21/4 dependence:~1!
3D adsorption;~2! 2D adsorption. The continuous line denotes the linear fit
calculated from Eq.~23! and the -•- lines show the results stemming from
the Langmuir model.

FIG. 8. Adsorption kinetics for longer times~MC-RSA simulations for ob-
late spheroids! expressed as theu5pa2N vs t21/4 dependence:~1! A50.1;
~2! A50.2; ~3! A50.5; ~4! A50 ~spheres!. The continuous line denotes the
linear fit calculated from Eq.~23! and the -•- lines show the results stem-
ming from the Langmuir model.
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u`50.76820.473A1
0.251

A
~26!

and the averaged value

ū`5
1

2 S 0.5471 u`2D~A!

A D .
As can be seen the exact values ofu` exceed the averaged
values for the entire range ofA.

It should be mentioned, however, that the RSA model
exposed in this paper, although useful due to its simplicity,
has certain limitations stemming from neglecting the interac-
tions between adsorbing particles and the interface and
among particles themselves~this effect should play a role for
low coverages!. On the other hand, for concentrations close

to jamming, the rotary and translational Brownian motion
should play a significant role in increasing the probability of
particle adsorption.

Adsorption kinetics in which particle diffusion effects
are considered can only be performed in terms of very te-
dious Brownian dynamic simulations to be presented in our
future papers.

However, despite its limitation, the RSA model proved
adequate for describing adsorption kinetics in the case of
spherical colloid particles under a certain combination of
flow and diffusion transport conditions.12,20,21 Using this
model it became possible to interpret correctly the kinetic
results obtained in various experimental works involving
protein, bacteria, and colloids.12

The success of the RSA approach in the case of spherical
particles would suggest that the theoretical results presented
in this work should also prove useful for nonspherical par-
ticles. A direct quantitative verification of this hypothesis is
planned in our future experiments.

IV. CONCLUSIONS

The theoretical analysis based on the RSA model
showed that the ASF for the adsorption of spheroidal par-
ticles in 3D can well be approximated in the limit of low and
moderate surface concentrations by the analytical expression

f̄~u!512C1u1C2u
210~u3!

FIG. 9. A top view of ‘‘monolayers’’ generated in MC-RSA simulations of
3D adsorption of prolate spheroids~t5105!; the upper part forA50.2 ~u
52.1!; the lower part forA50.5 ~u50.96!. The broken lines depict the
perimeter where the periodic boundary conditions were superimposed.

TABLE I. Saturation coveragesu` for prolate and oblate spheroids.

A
Prolate

u`

Oblate
u`

0.5 0.95360.003 1.0160.003
0.333 1.3860.008 1.3860.008
0.25 1.7860.01 1.7160.007
0.2 2.1760.01 2.0260.013
0.1 3.8660.022 3.1960.021

FIG. 10. Same as for Fig. 9 but for oblate spheroids~upper partA50.2,
u51.95, lower partA50.5, u50.98!.
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with the constantsC1–C2 determined numerically and inter-
polated by the functions given by Eqs.~13!–~18!. An inte-
gration of this equation produces the analytical kinetic de-
pendencies given by Eqs.~19! and ~20!.

The exact numerical simulations performed according to
the MC-RSA algorithm confirmed the validity of the above
analytical expressions for predicting particle adsorption ki-
netics for low and moderate concentrations.

On the other hand, it was demonstrated that for long
times, adsorption kinetics of spheroidal particles can well be
expressed by the asymptotic expression

u`2u;t21/4,

which implies that in this limit the ASF becomes

f̄~u!;~u`2u!5,

where the jamming concentrationsu` were found to be con-
siderably larger than for the previously studied case of the
2D ~side-on! adsorption.

The analytical results and the extensive numerical simu-
lations of adsorption kinetics suggest that the Langmuir
model requiring an empirical knowledge of the maximum
concentrationu` is not appropriate for describing localized
adsorption of spheroidal particles.
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5573Z. Adamczyk and P. Weroński: Random sequential adsorption

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996

Downloaded¬01¬Sep¬2002¬to¬130.132.101.191.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp


