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Density fluctuations in 2D systems of irreversibly adsorbed particles were studied. Analytical
expressions were derived connecting the magnitude of these fluctuations~characterized by the
reduced variances̄2! with the available surface functionf and the isotropic pair correlation
function g0 . Limiting expansions in terms of power series of the dimensionless coverageu were
also derived. The range of validity of these expressions was determined by performing numerical
simulations based on the random sequential adsorption~RSA! model. Calculations ofg0(r ), g0(s),
f, ands̄2 were performed for hard circles and hard ellipses characterized by aspect ratiok52 and
5. It was deduced that the simulation results can well be accounted for by the theoretical predictions
stemming both from the RSA and equilibrium models. ©1997 American Institute of Physics.
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I. INTRODUCTION

Interactions of macromolecules, colloid, and biopartic
~proteins, enzymes, viruses, bacteria, etc.! with solid–liquid
interface leading to adsorption and adhesion are of prac
significance for polymer and colloid science, biophysics, a
medicine enabling a better understanding and control of v
ous separation processes.

In comparison with molecular system adsorption
these particles is complicated by many factors most not
ably their shape anisotropy and irreversibility due to spec
interactions with the interfaces.1–3 Also the external and hy
drodynamic force fields may influence adsorption, especi
for larger particles.4–7

On the other hand, the model colloidal systems are
tractive for experimental studies since they can be dire
observed as individual entities under an optical microsco
In this way both adsorption kinetics, pair correlation fun
tions, and fluctuation in particle number density over vario
surfaces can be determined for spherically sha
particles.2,3,7–9These experiments were interpreted usually
terms of theoretical approaches based on various muta
of the random sequential adsorption~RSA! model,10–12 ex-
cept for dense particles~of size above micrometer! for which
the ballistic model was found more appropriate.4,5

The essence of the RSA approach consist in assum
that particles are adsorbing sequentially and irreversibly
available surface areas at surfaces of isotropic proper
when an adsorbing particle meets an area occupied by
preadsorbed particles it is rejected; the next adsorption
tempt is entirely uncorrelated with any of the previous on
The RSA model is especially appealing because not too h
surface concentrations predicts results indistinguishable f
the equilibrium models, especially the available surfa
function ~ASF! f. In this way, the model colloid system

a!Author to whom correspondence should be addressed. Fax:~48 12! 25 19
23. Electronic mail: ncadamcz@cyf.-kr.edu.pl
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create the unique possibility to verify by direct observatio
in situ various aspects of the statistical mechanical
proaches.

In contrast to the fairly good knowledge of the RS
processes for spheres, the case of anisotropic particles
scarcely been studied. In13,14 adsorption of cubes~more pre-
cisely squares! and cylinders~rectangles! was investigated
theoretically. Talbotet al.15 determined in terms of the
Monte Carlo RSA simulations the jamming concentratio
and adsorption kinetics of ellipses whereas in16,17similar cal-
culations aimed at determining the ASF function and ja
ming concentrations for rectangles, ellipses, and sphero
inders were performed. These authors also formula
asymptotic expressions describing adsorption kinetics in
limit of low and high surface concentrations. The kinetics
adsorption of prolate spheroids~ellipses! interacting via the
screened electrostatic potential was recently studied in R
18.

It seems that no results are available in the literat
concerning the density fluctuations in this system and th
relation to the isotropic radial distribution function. Th
should be the goal of our paper in which we perform expli
calculations in terms of the MC-RSA model for the 2D a
sorption of hard spheroids~ellipses!. A comparison with
equilibrium system is also carried out in order to determ
the range of coincidence of density fluctuations in reversi
and irreversible~RSA! systems.

II. DENSITY FLUCTUATION FORMULAE

A. Fluctuation in irreversible systems

Consider a macroscopic adsorption plane character
by the geometrical surface area:A, much larger than particle
cross-section areaAg , so the boundary effects could be n
glected. Let us assume that due to some random and is
pic adsorption mechanisms a large numberM of particles
was accumulated at the adsorption plane. Hence the aver
36913691/7/$10.00 © 1997 American Institute of Physics
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3692 Z. Adamczyk and P. Weroński: Irreversible adsorption of ellipses
2D particle densityr equalsM /A5u/Ag , whereu5r Ag is
the dimensionless surface concentration of adsorbed part
~coverage!.

Consider now a subsystem chosen randomly somew
at the adsorption plane whose surface area isDA. Denote by
q the conditional probability that there are exactlyNp par-
ticles overDA ~where Np>0! provided that there areM
particles adsorbed overA. Obviously q should depend on
Np , M , and the ratioDA/A. The variance ofNp is then
given by the defining equation

s25 (
Np>0

~Np2^Np&!2q5^Np
2&2^Np&

2, ~1!

where^Np&5(Npq is the averaged number of particles ov
DA and ^ & denotes the averaging procedure.

Explicit evaluation ofs2 requires a knowledge ofq
which can be calculated analytically for some Markoff pr
cesses where adsorption events are uncorrelated, i.e., pa
adsorption probability at a given point is independent
preadsorbed particle positions. This would correspond to
low-density regime of irreversible RSA7–9 and ballistic ad-
sorption mechanisms4,5 or the dilute gas model of reversibl
systems. In this limitq is given in the general case by th
binomial distribution

q~Np ,M !5S M
Np

D S DA

A D NpF12
DA

A GM2Np

, ~2!

where

S M
Np

D5
M !

~M2Np!!Np!

is the number of combinations for which particle configu
tion remains unchanged~undistinguishable particles!.

Substituting the expression forq into Eq. ~1! one can
derive fors2 the simple formula

s25M
DA

A S 12
DA

A D5rDAS 12
DA

A D
5^Np&S 12

DA

A D , ~3!

where^Np&5rDA is the averaged number of particles ov
DA. Note thats2 does not depend explicitely onM .

In the limit whenDA/A→0 ~while M is kept large! the
binomial distribution reduces to the well-known Poisson d
tribution, i.e.,

q5p~Np!5
^Np&

Np

Np!
e2^Np&. ~4!

Using Eq. ~1! one obtainss25^Np& ~this can also be de
duced from Eq.~3! in the limit DA/A→0!.

As mentioned above, the Poisson distribution is expec
to describe well the situation when the probability of succ
sive adsorption events remains independent of the numb
particle already present at the surface. This condition is
viously violated for larger coveragesu due to the surface
exclusion effects. The adsorption probability is then go
J. Chem. Phys., Vol. 107, N
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erned by the available surface function~ASF! f introduced
by Widom19 which is equal one foru50 and decreases t
zero in irreversible~RSA! processes when the limiting~jam-
ming! surface coverage is approached.

Exploiting the concept of ASF and using the maximu
term method, it was shown in Ref. 9 that the reduced v
ances2/^Np&5s̄2 is given by the expression

s̄25
f

f2u
df

du

5
1

11u
dm ir /kT

du

, ~5!

where

m ir 52kT ln f ~6!

can formally be treated as the irreversible potential.
One can invert Eq.~6! to calculatef, i.e.,

f5e2m ir /kT5expF2E S 12
1

s̄2D d ln uG . ~7!

Equation~5! is useful for calculating density fluctuation
because many series expansions and interpolating func
for f exist in the literature. Thus, the low-density expansio
for RSA processes of convex particles assume the form11,18

f512 (
n>1

Cnun. ~8!

The C1–C3 constants related to the virial coefficients we
calculated analytically for spherical particles in 2D~disks!11

and they assume the form

C154, C2526A3/p,
~9!

C3540/pA32176/3p2521.407.

For convex particles onlyC1 can be expressed
analytically20 as

C1521
P2

2pSg
, ~10!

whereP is the perimeter of the particle.
Ricci et al.17 calculated the remainingC2–C3 coeffi-

cients numerically for ellipses, cylinders, and spherocyl
ders. On the other hand, theC1–C2 constants for interacting
particles~Yukawa type potential! were calculated in Ref. 18

Substituting the series expansion Eq.~8! into Eq.~5! one
can deduce that in the limit of low density the reduced va
ance is given by the expression

s̄2512C1u22C2u22~3C32C1C2!u31•••O~u4!.
~11!

For low coverages this agrees with the the result of Sch
et al.21 who deduced thats̄25f in the limit of low densities.

Equation~11! has a practical significance because it
dicates that by measuring fluctuations in particle density~for
low u! one can determine theC152B2 constant~whereB2 is
the second virial coefficient! which has a natural physica
interpretation as the averaged surface area excluded by
o. 9, 1 September 1997
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3693Z. Adamczyk and P. Weroński: Irreversible adsorption of ellipses
particle. This in turn enables one to estimate the range
interaction between adsorbed particles and adsorption k
ics ~governed byf! for low coverages.

B. Equilibrium systems

Since the properties of a RSA system should appro
the equilibrium systems in the limit of low density, w
present some useful equations characterizing fluctuation
these systems.

The variance of the density fluctuations in the grand
nonical ensemble are given by the known thermodyna
relationship22

s̄25kT
1

^Np&
S ]m

]^Np&
D

A,T

21

5
1

u S ]m/kT

]u D
A,T

21

, ~12!

wherem is the chemical potential andT is the absolute tem
perature. Using the Gibbs–Duhem relationshipdm
5(1/r) dp ~wherep is the 2D pressure! one can convert Eq
~12! to the useful form

s̄25kTS ]p

]r D 21

5S ] p̄

]u D 21

, ~13!

wherep̄5kTp/Ag.
Equation~13! is useful because many approximate e

pressions forp̄ as a function ofu exist, e.g., in the form of
virial expansions

P̄

u
511 (

n>2
Bnun21. ~14!

By differentiating this series and substituting into Eq.~13!
one obtains for 1/s̄2 the expansion

1/s̄2511 (
n>2

nBnun21. ~15!

This can be inverted to the form

s̄25122B2u1~4B2
223B3!u2

1@12B2B324~2B2
31B4!#u31O~u4!. ~16!

SinceC2522B2
21 3

2B3 one can deduce that this expansi
is identical to the expansion Eq.~11! up to the termu2.

Explicit values ofBn up to the seventh term were re
ported in the literature23 for spheres~3D! and disks~2D!. On
the other hand, for ellipses, cylinders, and spherocylind
these virial coefficients were calculated up to the order
four only.17,24

Using the scaled particle theory~SPT! Boublik20 derived
simple analytical expressions for the 2D pressure of arbitr
convex particles

p̄

u
5

11~g21!u

~12u!2 , ~17!

whereg5P2/4pAg is the shape parameter.
By differentiating Eq.~17! with respect tou and substi-

tuting into Eq.~13! one obtains fors̄2 the expression
J. Chem. Phys., Vol. 107, N
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s̄25
~12u!3

11~2g21!u
. ~18!

The low coverage expansion of Eq.~18! is

s̄25122~g11!u1~8g21!u212~327g!u3

1•••O~u!4. ~19!

As noticed in Ref. 24, the Boublik expression for th
pressure becomes rather inaccurate for elongated part
when g@1. In this case Song and Mason25 proposed the
following improved semiempirical equation:

p̄

u
5

11~B222!u1~12B2g1!u21B2g2u3

~12u!2 ~20!

where

g1522B̄3B2 ,

g25122B̄3B21B̄4B2
2,

B̄35B3 /B2
2; B̄45B4 /B2

3.

Using Eqs.~20! and ~13! one can derive fors̄2 the fol-
lowing expression:

s̄25
~12u!3

11~2g21!u1A2u21A3u31A4u4 , ~21!

where

A253@122~11g!1~11g!2B̄3#,

A352116~11g!29~11g!2B̄314~11g!3B̄4 ,

A4522~11g!14~11g!2B̄322~11g!3B̄4 .

An implementation of Eqs.~20! and ~21! one requires
the third and fourth virial coefficients which have been c
culated in Refs. 17 and 24.

Using the method of Ornstein and Zernicke22 one can
alternatively express Eq.~13! via the two particle radial dis-
tribution function, in the commonly used form

s̄25112prE @g0~r !21#dr , ~22!

whereg0 is the isotropic distribution function26,27 and r is
the center to center distance vector.

It should be mentioned that Eq.~22! is also applicable
for irreversible systems, e.g., those generated in RSA p
cesses.

III. SIMULATION METHOD

The RSA simulations were performed according to t
algorithm described in some detail elsewhere.18 The basic
features of the model can be characterized as

~i! particles are placed at random over a square sim
tion planeDA with periodic conditions at its bound
ary; thex,y coordinates and the orientationa of the
particle are sampled from uniform distributions,

~ii ! if the currently simulated particle overlaps with an
o. 9, 1 September 1997
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3694 Z. Adamczyk and P. Weroński: Irreversible adsorption of ellipses
previously adsorbed it is rejected with unit probabili
~the Vieillard–Baron function28 was used to optimize
the overlapping test! and the simulation loop is re
peated

~iii ! otherwise, the particle is assumed irreversibly a
sorbed and its coordinates and orientation are sto

In order to enhance the efficiency of the overlapping t
a subsidiary 2D matrix was introduced containing inform
tion about numbering of neighboring particles.

The ASF function was calculated by stopping the a
sorption simulation loop at a desired surface coverage,
then performing large number of virtual adsorption attem
Natt. Out of them onlyNsucc were potentially successfu
Then,f can be approximated asNatt/Nsucc in the limit when
Nsucc→`. Many independent simulations off were aver-
aged in order to increase its estimation accuracy. The der
tive of f needed for Eq.~7! was calculated by using subsid
iary interpolating polynomials which were analytical
differentiated.

The isotropic radial distribution functiong0 was calcu-
lated by generating particle populations according to
above RSA scheme and then using the definition

dN

dr
52prg0~r !r, ~23!

whereN is the number of neighbors separated by the d
tance r or less. Thus,g0 can be calculated in practice b
averaging the number of particlesDNp found under arbitrary
orientation within the ring 2prdr drawn around a centra
particle, i.e., from the formula

g0~r 1Dr /2!5
1

r K DNp

2prDr L . ~24!

Additional averages from many computer runs were ta
~with particles adjacent to the simulation plane boundary
jected! in order to keep the overall number of particles co
sidered forg0 evaluation equal 105.

As discussed in the work of Romanet al.29 for finite
particle system, theg0 function deviates at larger distance
from its infinite system counterpart by an increment
versely proportional to the total number of particles cons
ered, i.e., about 1025 in our case. This assured a sufficie
accuracy of calculatings̄2 via integration ofg0 according to
Eq. ~22!.

Since for some application the pair distribution functi
expressed in terms of the surface to surface distances has
advantages over theg0(r ) defined above we also calculate
the isotropicg0(s) from the defining equation30,31 which for
the 2D situation becomes

dN

ds
5Psg0~s!r, ~25!

where Ps52(P1ps) is the orientation averaged length
the curve formed by rotating a particle separated by the
face to surface distances around a central particle.20 The
minimum surface to surface distances for a given part
J. Chem. Phys., Vol. 107, N
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orientation was found using the method described in Ref.
~based on an false position solution of the nonlinear trigo
metric equation!.

Using g0(s) one can formulate Eq.~22! in the form

s̄2512C1u1rE
0

`

@g0~s!21#Ps~s!ds. ~26!

The variance of particle distributions were determined
pseudo computer experiments in which particle populati
of about 23104 were simulated using the above RSA alg
rithm over the quasi macroscopic surface~the maximum
coverages attained in these simulations were 0.5 since
larger values the computer time became prohibitive!. Then,
the large area was subdivided into square nonoverlapp
subsystem having the surface areaDA. The size of the sub-
system was so adjusted that the averaged number of part
found over these areas^Np& was approximately equal a pre
scribed value~we used 30, 60, 90, and 180 throughout o
calculations!. Averages from many computer runs we
taken in order to attain the total number of subsystems eq
105.

The variance of particle number found over these ar
was calculated from the definition Eq.~1!. For smaller cov-
erages~u,5%! when the ratioDA/A could not be kept neg-
ligibly small a correction for the binomial distribution wa
introduced as described in Refs. 29 and 32.

Simulations described in this work were performed f
ellipses having the major semiaxisa and shorterb; their
ratio a/b is denoted byk ~in previous works9,18 we used the
parameterA51/k!. All calculations have been carried out fo
k51 ~circles!, k52, andk55.

IV. RESULTS AND DISCUSSION

The isotropicg0(s) and g0(r ) functions calculated ac
cording to the above RSA simulation method are shown
Figs. 1~a! and 1~b! for k55 and various surface coverage
i.e., 20%, 35%, and 50%. We did not attempt to compare
results with the equilibrium 2D results because these see
not exist in the literature. As can be seen theg0(s) for elon-
gated ellipses resembles the sphereg(r ) function, especially
for smaller distances and low coverages. However, the m
mum and the secondary peak characteristic for spheres
appeared practically in the case of ellipses. This is even m
apparent when theg0(r ) for ellipses are concerned@cf. Fig.
1~b!#. In this case even the first peak and hardly be dis
guished andg0 decreased almost monotonically from one
zero within a rather broad range of distances. Thus, theg0 vs
r dependencies for ellipses are considerably less informa
than for spheres in respect to the nearest neighbor conce
tion.

In Figs. 2~a! and 2~b! the g0(s) and g0(r ) functions
calculated fork52, andk55 are collected. As the referenc
state, we plotted the correspondingg function for spheres
(k51).

It should be noted that very similar results as that sho
in Figs. 1 and 2 results were reported recently for sphero
inders in 2D~diskorectangles! in Ref. 27.
o. 9, 1 September 1997
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3695Z. Adamczyk and P. Weroński: Irreversible adsorption of ellipses
The isotropic correlation functions were used for det
mining the reduced variance by using Eq.~22!. First it was
checked if the upper integration limitr mx ~which must re-
main finite in any numerical integration! exerted any influ-
ence on the calculateds̄2. It has been found that the integr
became practically insensitive onr mx when it was chosen
larger than eight particle radii in the case of spheres and
major semiaxes in the case of ellipses. However, forr mx

larger than these limiting values a statistical scatter ofs̄2

became apparent. It should be noted that for this integra
limit the number of particles within the integration area w
negligibly small in comparison with the entire particle pop
lation ~105 particles as previously stated! so theexplicit size
effects28 became negligible.

It has also been proved that the integration of theg0(s)
function according to Eq.~26! gave the same results as th
integration of theg0(r ) dependence.

The results of these calculations together with the dir
determination ofs̄2 from ‘‘computer experiments’’@using
Eq. ~1!# for hard spheres are collected in Fig. 3. As one c

FIG. 1. ~a! The pair correlation functiong0(s) for hard ellipses (k55) at
various surface coverages: 1.u550%, 2.u535%, 3.u520%. ~b! The pair
correlation functiong0(r ) ~hard ellipses,k55!, 1. u550%, 2.u535%, 3.
u520%.
J. Chem. Phys., Vol. 107, N
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notice in this Fig. the reduced variance derived from co
puter experiments is dependent on the averaged numbe
particles^Np& adsorbed on the small areaDA. This behavior
was first detected by Sengeret al.32 and Romanet al.29 who
attributed this to the fact that particle positions within t
small area are not statistically equivalent, i.e., the entire p
ticle population onDA can be divided into ‘‘core’’ and ‘‘pe-
ripheral’’ particles located close to the boundary of the sm
areaDA. According to the analysis performed in Ref. 32 a
29 this leads to the increase in the variance described by
perturbing terms vanishing as (Ag /DA)1/2 and (Ag /DA) in
the limit when DA→`. Thus, for largeDA the reduced
variance is approaching the limiting value fitted by the po
nomial

s̄25124u1
8A3

p
u210.824u322.28u4. ~27!

As can be noticed in Fig. 3 our simulation data~com-
puter experiments! seem to approach for large^Np& the val-
ues derived from Eq.~27!. Also the results derived by inte

FIG. 2. ~a! The g0(s) function and~b! the g0(r ) function for hard ellipses
with various elongation. 1.k51 ~spheres!, 2. k52, 3. k55, u550%.
o. 9, 1 September 1997
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3696 Z. Adamczyk and P. Weroński: Irreversible adsorption of ellipses
grating theg0(r ) or g0(s) functions agree very well with Eq
~27! for the entire range of surface coverages studied~0%–
50%!.

For comparison we also have plotted in Fig. 3 the cur
derived from various analytical approximations, i.e., fro
Eq. ~5! giving s̄251/(12d ln f rsa), from the Schaafet al.21

theory, i.e., s̄25f and from the equilibrium theory ex
pressed by Eqs.~18! and~21! As one can notice, the varianc
calculated from the irreversible RSA model lies the same
u always below that predicted for the equilibrium situatio
This is understandable considering the lower probabi
~measured by the ASF functionf! of adding a particle to a
RSA configuration than to the equilibrium configuration.
can also be observed in Fig. 3 that the analytical form
s̄251/(12d ln frsa) reflects the simulations for the entir
range ofu. However, some small but statistically significa
deviations occur for moderate and high coverage regions
the latter region the positive deviations of the variance
rived from computer experiments from the theoretical p
dictions can probably be attributed to the finite size of
large simulation areaA, which should increase density fluc
tuations. This hypothesis could be verified by performi
simulations using much larger sizes of the simulation pla
A. However, due to prohibitive computer times these cal
lations do not seem feasible at the present.

There appears also a discrepancy between the nume
results and the theoretical predictions for moderate sur
coverages which is more difficult to interpret. From the po
tulate that the RSA and equilibrium models give identic
expressions forf up to the order ofu2 one could deduce
using Eqs.~11! or ~16! that the numerical results should b
well fitted for low and moderate coverages by the polyn
mial 124u112A3/p u2 whereas in reality they are we
described by the polynomial 124u18A3/p u2. This dis-

FIG. 3. The reduced variances̄2 as a function ofu; open circles denote the
computer experiments for̂Np&530, triangles for̂ Np&5180, inverse tri-
angles denote the values calculated from Eq.~22! and the lines denote vari
ous analytical approximations. 1. SPT equilibrium theory~Ref. 20! Eq. ~18!,
2. Song Mason~Ref. 25! formula, Eq.~21!, 3. Equation~5!, 4. Sengeret al.
~Ref. 32! fitting polynomial Eq.~27!, 5. Schaafet al. ~Ref. 21! formula
s̄25f.
J. Chem. Phys., Vol. 107, N

Downloaded 01 Sep 2002 to 130.132.101.191. Redistribution subject to 
s

s
.
y

a

In
-
-
e

e
-

cal
ce
-
l

-

crepancy may suggest that in contrast to the ASF funct
the RSA and equilibrium correlationg0(r ) functions are dif-
ferent for all coverages except perhaps at the point of con
(r→2a). Indeed, by assuming

g0~r !511h1~r !u1O~u2!

@where h1(r ) is the first expansion coefficient of the tot
correlation function#, one can deduce from Eq.~22! that

s̄25124u1H~2a!u21O~u3!, ~28!

where

H5
1

Ag
E

2a

`

h1~r !r dr .

Since the coefficient atu2 in the variance expression is dif
ferent for RSA and equilibrium situation this proves th
h1

rsaÞh1
eq for r .2a.

Similar conclusions based on the results shown in Fig
can be also be formulated for elongated ellipses (k55). In
this case the fitting polynomials̄2 was found to be:

s̄25122B2u113.98u215.418u3258.86u4157.35u5.
~29!

It should be mentioned in real experiments involvin
colloid particles the small differences between various
proaches discussed above cannot be detected due to,
particle polidispersity or surface heterogeneity effects. Ot
complicating factors are stemming from the sedimentati
diffusion, and hydrodynamic effects. However, under a c
tain combination of relevant physicochemical parameters
RSA case can be realized as demonstrated in recent ex
ments reported elsewhere7 involving polystyrene particles o
micrometer size range adsorbing on mica from electrol
solutions.

FIG. 4. Same as for Fig. 3 but for hard ellipsesk55. 1. SPT equilibrium
theory~Ref. 20! Eq. ~18!, 2. Song & Mason~Ref. 25! formula, Eq.~21!, 3.
Equation~5!, 4. Schaafet al. formula ~Ref. 21! s̄25f, 5. Our fitting poly-
nomial Eq.~29!.
o. 9, 1 September 1997
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V. CONCLUDING REMARKS

Numerical simulations performed according to the RS
scheme revealed that the density fluctuations of nonsphe
particles ~ellipses! can well be described by Eq.~22! for
coverage range up to 50%. The reduced variance of th
fluctuations becomes identical with the equilibrium fluctu
tions in the limit of low coverages and can be expressed

s̄ rsa
2 5s̄eq

2 5122B2u1O~u!2.

Hence by measuring thes̄2 vs u dependence for irreversibl
systems~colloid particles! obeying the RSA mechanism i
the limit of small u one can exactly determine the seco
virial coefficient of reversible systems.

However, for higher coveragesu the RSA variance is
always smaller than the equilibrium variance described
Eqs. ~18! and ~21!. The differences appear already in th
third (u2) term of the expansion ofs̄2 vs u. By comparison,
for thef vs u expansions the differences are only apparen
the fourth- and higher-order terms. This suggest that
equilibrium and RSA total correlation functions differ eve
in respect to the lowest-order terms.

The irreversible fluctuations can well be reflected for t
entire range ofu by Eq. ~7!, i.e., s̄25f/@f2udf/du# ~de-
rived by probabilistic arguments! which is also applicable for
reversible systems. However, the exact value of thef rsa

function needed in this equation must be derived from
merical simulations.

It can also be concluded that due to the limited expe
mental accuracy the fluctuations in irreversible colloid s
tems governed by the RSA model may appear identica
fluctuations in equilibrium systems for coverages up to
jamming limit.
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