

Draft of the paper presented on 7th IFAC Symposium on Advances in Control

Education, June 21–23, 2006, Madrid, SPAIN, session ThA03




BRIDGING THE GAP BETWEEN COMPUTER SCIENCE AND TECHNOLOGY


Zbigniew Mrozek


Cracow University of Technology (Politechnika Krakowska)

24 Warszawska Str., PL 31-155 KRAKOW, Poland,
pemrozek@cyf-kr.edu.pl, http://www.cyf-kr.edu.pl/~pemrozek

 

Abstract: Most of students do not have enough experience of working in interdisciplinary team. This

paper shows how some interdisciplinary control problems can be stated and solved by students with

some knowledge of modern CASE tools. An example of automotive ABS (Anti-lock Braking System) is

given to explain graphical approach with RUP and UML in design of a control system. Copyright ©

2006 IFAC


Keywords: control, mechatronics, requirements analysis, modelling, validation, RUP, UML.






1. INTRODUCTION

Design is a part of life cycle of product (figure 1).

Students should understand how to minimise risk of

the control project failure, risk of project delay or

over-budgeting. The paper describes usability of:

 RUP (rational unified process)

methodology

 CASE (computer aided system engineering)

tools based on UML (unified modelling

language)

The above tools were invented for use in area of

software engineering, but they may be efficiently

used in design of any control systems.

2. TEACHING THE DESIGN METHODOLOGY

Bruegge and Dutoit (1999, 2004) in their excellent

book introduce UML as a base to object oriented

software engineering. This approach is not limited to

pure software engineering and may be successfully

used in design of any system (Mrozek 2003- 2005).

UML models may describe architecture and

behaviour of the future system on high level of

abstraction, including its software and hardware

subsystems of controller.

UML is independent of programming languages and

independent of physical nature of a hardware used.

Student may explore graphical UML models to

verify his ideas, before source or binary code is

prepared, and before physical prototype of the

hardware is build. UML models form a good base for

future detailed design and prototyping of the control

system. It is also an important step towards con-

current design and early integration of subsystems of

different nature, leading to solutions where control

software, electronics and precision mechanics is

integrated into one mechatronic product or device.

design

maintenanceexploitation
refinement of
requirements
for a new product

production

recycling

imple-
mentation

iteration

requirements

detailed
design

conceptual
&arch design

vali-
dation

prototyping, testing
& verification

new product idea

Figure 1. Design is a part of life cycle of a product

2.1. The design process

A modern design process may be presented as

a sequence of (fig. 1):

early design phase, which include elicitation of

requirements (inception) and conceptual

design (elaboration). Off-line simulation

may be used for testing the designed

models,

building (construction) phase, which starts with

detailed design of subsystems. Then

simulation and prototyping is done, as well

as implementation and testing of hardware

and software,

deployment (transition) of achieved solution.

2.2. Rational Unified Process (RUP)

Planning, management and monitoring of team work

may be done using Rational Unified Process (2001,

2004) or any other effective methodology. RUP is

the software engineering methodology based on best

practises, learned from thousands of successful

projects. Some parts of this methodology are useful

in design of control systems.

mailto:pemrozek@cyf-kr.edu.pl

There are four development phases defined in RUP:

inception, elaboration, construction and transition.

There are also well defined conditions (milestones)

to be fulfilled, before new phase of design is started.

Inception corresponds well with requirements

elicitation of early design phase. Elaboration is

focussed on analysis of the problem domain,

establishing future system architecture and

elimination of the main risk of project failure. It

extends conceptual design phase. Construction

phase may include prototyping, detailed design and

implementation. Transition means production and

deployment of the product.

Elicitation of requirements and business modelling

(with use cases) is mainly done during inception

phase, and on the other hand, analysis and design of

models is the main job during elaboration phase of

design. Students should find and justify what is the

main (taking most of effort) activity during each

phase of design.

Preparing own projects, students will realise that

design is not strictly sequential but rather an iterative

effort, with many small design steps (micro-steps).

After each step, the affected part of system is tested

against requirements. Very often result of a step (or

micro-step) is not satisfactory and the designer

decides to return back to one of previous steps. Then

he repeats the affected part of the design. The

sequence of testing and redesigning (one or more

steps) may be repeated many times in a loop

(iteration on Fig. 1 and Fig. 2) – until satisfactory

result is achieved.

2.3. The RUP methodology guidelines

In author’s opinion, best practices, spirit and

essentials of RUP (Probasco, 2003) may be

concluded in few guidelines:

 Identify major risks and attack them early,

or they’ll attack you

 Model the system visually

 Develop interactively, make quality a way

of life, not an afterthought

 Ensure that your deliver value to your

customer

The above guidelines fit as well to software

engineering as to designing of any control system.

2.4. Using Unified Modelling Language (UML) for

modelling and inter-team communication

Inventors of RUP were motivated to create notation

for their unified methodology (Jacobson at all, 1999).

The result was UML, a language for specifying,

visualising, constructing and documenting the

artefacts. From version 1.1, the UML language is

non-proprietary and open to all. It is maintained by a

non-profit organisation: Object Management Group

(OMG, 2006)

Many attempts were done to extend the software

engineering methodology and UML in areas beyond

informatics. McLaughlin and Moore (1998) were

probably the first to describe real time control

process (conveyor belt transport subsystem) using

UML-like class diagram. Now UML diagrams are

used for preparing different models on high level of

abstraction (Mrozek, 2001-2004; Mrozek et al, 2002)

UML notation helps to describe and to understand

functions, services and activities of any system,

regardless of its physical nature. This is very useful

during all design phases of control systems. Models

are essential for communication between members of

interdisciplinary team of designers.

Designing UML diagrams on computer screen is

supported with CASE (computer aided software

engineering) software tools. Best-known packages

are Rational Rose (2004), Rhapsody (2004), Visual

Paradigm for UML (2006) and Real-time Studio (2004).

Some CASE tools offer simulation and animation of

UML models. Simulation will be more realistic, if

virtual console with animated dials and gauges is

shown on computer screen. State diagram may be

build and animated with MATLAB/Stateflow. This

helps to see behaviour of the system under design.

Moreover C or binary code for the state diagram

functionality may be automatically generated with

MATLAB/RTW /Stateflow.

As Brugge and Dutoit (2004) points out; it is

sufficient to have a deep knowledge of a small subset

of UML to use it (“you can model 80% of most

problems by using about 20% of UML”). There is no

need to use all of kind diagrams during the design.

In author’s opinion, use case diagrams, scenarios,

class diagrams, sequence diagrams and state

diagram are most important. Additional system

architecture diagram (supported by Real-time

Studio, 2004) may show communication links

between parts of system and is very well suited for

detailed design of the computerised control

subsystems. Component and deployment UML

diagrams are software-oriented and less useful in

area of control.

3. AN EXAMPLE OF CONTROL PROBLEM

Design starts when need of new or improved solution

came into sight (Figure 2). Next step is to transform

the idea into specification of requirements, followed

by conceptual design, as presented in paragraph 2.1.

An example of automotive Anti-lock Braking System
(ABS) is used in this paper.

3.1. Elicitation of requirements

During elicitation of requirements, borders and

external behaviour of the system are defined and

criteria of consumer satisfaction are set. This may be

influenced with development strategy of a company.

earlyStepEng/Chart

ELABORATION

to
CON-
STRU-
CTION

Start

INCEPTION

Iteration

development
strategy

model
modificationrequirements

elicitation

product &
concept
analysis

feasibility
study

simulation &
prototyping

Iterationmarketing

consumer & market
demand (business modeling)

problem
statement

Fig. 2. Early design phases: inception and

elaboration

3.2. Graphical representation of requirements on

Use Case Diagram.

The goal of elicitation of requirements is to describe

what the system should do and (which seems to be

equally important) to agree with customer on this

description.

Students should take into account that original

textual description of the problem may be incomplete

or some requirements may conflict with others. Even

meaning of the same textual phrase may be different

to some members of design team. Blaming the client

for a defective problem statement is not acceptable,

as consumer satisfaction is one of main objectives of

design.

Use case diagram (figure 3) shows actors, use cases

and interactions between them. It describes how the

system may be used by user and how the system

interacts with other external actors.

ABSFailure Light

Driver

startCar

BrakeTheCar

TestABS

Control
Skidding

 Fig. 3. Use case diagram for automotive ABS

An actor (human user, another system or external

signal, connected to sensor or interface) is a thing

outside the actual system, which interacts with the

actual system. Actor is depicted as a simple icon of a

man.

Use cases are system boundaries identifying what the

system should do. They capture subsystem

functionality as seen from the point of view of end

user or domain expert and help to understand how

the system should work. Internal structure of the

system is not shown on this diagram.

Use case icon is an ellipse. Actors and use cases set

the border between the system under development

and its external environment.

3.3. Scenario describes the sequence of actor and

system interactions

Scenario. Scenario is a textual description or set of

messages in natural language, describing the

sequence of actor and system interactions. It

describes details of use case functionality.

 Driver turns on the car engine. ABS system

is self-tested

 Driver increases car speed to 110 km/h

 He presses the brake pedal to stop the car in

emergency. Brakes are active and ABS is

self-tested again

 ABS system senses non-uniform

deceleration of wheels due to wet road

surface. It activates modulation of pressure

in affected wheels

 Car stops

.

4. CONCEPTUAL DESIGN

Conceptual design (elaboration in RUP terminology)

is the most crucial part of design process. During

conceptual design, feasibility study, estimation of

needed resources and business plan for development

(including implementation costs) are prepared. The

objective are: to establish a sound architectural

foundation, to develop the project plan and to

eliminate highest risk elements of the project.

Preliminary architecture is refined many times, as

new UML diagrams are prepared and then iteratively

analysed, modified and tested.

4.1. Deciding on architecture of the system

 At the beginning, students should analyse the

scenario to identify candidates for actors (driver and

road condition (e.g. wet)), objects (car, engine,

brake_pedal, ABS_system, wheel) and attributes

(turn-on, speed, stop, emergency, deceleration).

Similar objects are generalised into class. This leads

to preliminary version of class diagram.

An internal structure of the system is presented on

class diagram. It shows classes and relationships that

exist between them. An example of class diagram for

automotive ABS subsystem is presented on figure 4.

Students should identify classes from scenario, set

the class name, attributes (variables and parameters)

and operations (services or responsibilities of a class.

They have also to decide on relations, shown as

different lines, with or without arrows.

Fig. 4. Static structure of automotive ABS system is

 presented on class diagram

It is not a good idea to design complete diagrams

sequentially. Instead, an iterative and concurrent

approach is advised. Objects and classes are used to

build other diagrams. Changes in object hierarchy,

in naming, operations and attributes are inevitable,

when other diagrams are under design. This is

especially true when sequence or state diagram is

prepared.

If a good CASE tool is used (e.g. Rational Rose), the

same classes on different diagrams are synchronized

and updated if class name, attribute, type or

operation is intentionally changed on any other

diagram. New classes, operations and attributes are

added to respective class diagram – if needed for

actually designed diagram. Other (if not used) are

considered for deletion. All changes are performed

easily on computer screen.

4.2. Verification of requirements and system

architecture

Students should understand that an important reason

for building UML diagrams is to mitigate possible

failure of the project. During this process, student

verifies specification of requirements and scenarios

against omissions and inconsistencies Scenario is

verified with sequence diagram, which shows what

objects does to implement this scenario. Sequence

diagram (figure 5) is a graphical model of the

scenario.

 : Driver
 : Pedal : Car : ABScontrol : Hydr_Modulator

 : Skidding

start()
testSystem()

press()

testSystem()

 Fig. 5. Sequence diagram for an ABS system

Actors and objects are shown on top of sequence

diagram. Time flows down the vertical lines (life

line). Object may send messages (horizontal line

with an arrow) to ask needed services from another

object (e.g. “Driver” may press “Pedal”), as

described in scenario. Student should understand that

message is not free text but name of operation owned

by target class. Timing marks may be added to show

exact time constrains.

Collaboration diagram provides essentially the same

information as sequence diagram and is not

described here.

5. VERIFYING RESPONSIBILITY OF OBJECTS

AND SUBSYSTEMS

Statechart diagram of Harel (1987) is used to

describe and verify behaviour of the system or its

part (subsystem, use case, object). Comparing with

sequence diagram or single scenario, the state

diagram shows all states the system or its part (class,

use case) may go through during its lifecycle.

Each state represents a named condition during the

life of an object (e.g. Brake_Idle on fig. 6). Object

stays in actual state until it is fired by some event or

when given condition (that must be fulfilled before

the transition) will occur. Lines with arrow show

possible transitions (change of state). A black ball

shows a starting state. The end state (if exists) is

denoted as black ball in a circle. ABScontr/Chart

Car_immobilised

exit /TestABS

BrakingNoABS

entry[absOK] /testABS()
do /brake(pedalForce)
do[absOK] /watchSkid()

ABS_modulates

Brake_Idle

fullPreasure

release

[absOK]

[absFail] /set(failLight)

[pedalOff]

[pedalOn] [pedalOff]

getWheel
Speed

[V<Vo]

[skid]
[noSkid]

[skid & V>Vo]

GetWheelSpeed
Get Wheel
Speed

Fig. 6 State diagram for automotive ABS brake


State diagram presented on figure 6 models

behaviour of the automotive ABS brake. It was

prepared with Stateflow, in the MATLAB/Simulink

software environment (Mrozek B, Mrozek Z. 2004).

An important advantage of this environment is

possibility of simulation (of-line, on-line real-time,

hardware in the loop) and prototyping. Later,

simulated virtual model may be automatically

compiled with MATLAB/RTW/StateflowCoder and

loaded into FPGA or micro controller.

If concurrent activities are needed, students may use

an activity diagram. It is well suited to describe set

of sequential and parallel activities.

6. EDUCATIONAL REMARKS

Lecture on RUP and UML should have 45-60 hours.

In laboratory, students should be organised in groups

of 2-3 persons. Each group is given the same goal to

achieve: to prepare scenario and UML diagrams

describing controller for modern product or device

(e.g. automotive ABS or ESP
1
 controller, automatic

coffee machine, etc.) If laboratory equipment

permits, the next step should be prototyping of

controller in MATLAB/Simulink/RTW or

Modelica/Dymola environment, using dSPACE,

xPC, FPGA or supported microcontroller hardware.

The groups work separately, but each (or every

second) week they meet on seminar and discuss their

progress and common mistakes. When work is

finished or deadline is reached - they prepare their

final reports and present them on seminar.

7. CONCLUSIONS

The main reason of teaching RUP and UML is to

show that main risk of the project failure may be

sufficiently mitigated during early design phase. This

is important conclusion, as time delay and cost of

modification will be much higher, if corrections and

1
 Electronic Stability Program (ESP), Bosh

redesign are made later, during detailed design,

implementation or (it is the worst case) during final

design tests.


UML model describes architecture and behaviour of

the future control system. Student do not need to

decide on physical nature of hardware subsystems

and their details, because it is not shown on diagrams

created on high level of abstraction. Preparation of

diagrams automatically verifies specification of

requirements and scenarios against omissions and

inconsistencies. This helps to verify functionality of

future system and helps to improve the system

quality.

Using commercially available CASE packages, UML

may greatly improve productivity of the design team

by cutting down development time and improving

final product quality - in accordance with ISO 9000

standards.

8. ACKNOWLEDGEMENTS:

Author wants to express his gratitude to IBM and

The MathWorks Inc (USA) for free evaluation

licenses for software presented in this paper.


More systematic description of RUP, UML and

Stateflow may be found in cited literature






REFERENCES


Bruegge B, Dutoit A, (1999). Object-Oriented

Software Engineering: Conquering Complex

and Changing Systems, Prentice-Hall.

Bruegge B, Dutoit A, (2004). Object-Oriented

Software Engineering: Using UML, Patterns,

and Java, Pearson Prentice-Hall.

Harel D. (1987). Statecharts: A visual formalism for

complex systems, Sci of Comp. Programming, ,

No 8, pp 231-274.

McLaughlin J. and Moore A (1998) Real-Time

Extensions to UML, Timing, concurrency, and

hardware interfaces, Dr. Dobb's Journal

December

Mrozek Z. (2001). UML as integration tool for

design of the mechatronic system, In: Second

Workshop on Robot Motion and Control,

(Kozlowski K, Galicki M, Tchoń K (Ed)), pp

189-194, Bukowy Dworek, Poland

Mrozek Z., Mrozek B., Osei Adjei, (2002) Teaching

object oriented software engineering with UML,

13th EAEEIE Conference "Innovations for

Education in Electrical and Information

Engineering", April 8-10, York

Mrozek Z, Tao Wang, Minrui Fei. (2002) UML

supported design of mechatronic system, Proc of

Asian Simulation Conference/5-th Int.

Conference on System Simulation and Scientific

Computing, Shanghai, China, Nov. 3-6,.

Mrozek Z. (2003). Computer aided design of

mechatronic systems, International Journal of

Applied Mathematics and Computer Science, vol

13 No 2, pp 255-267

Mrozek B, Mrozek Z. (2004) MATLAB i Simulink,

poradnik użytkownika Helion, Gliwice.

Mrozek Z (2004). Importance of early design phase

in mechatronic design. In: Proceedings of 10th

IEEE International Conference on Methods and

Models in Automation and Robotics (Domek S.,

Kaszynski R (Ed)), vol 1 pp 17-28,

Miedzyzdroje, Poland

Mrozek Z (2005). An effective graphical approach

to define objectives and structure of a control

system , 16-th Word Congress in Prague

OMG (2006) Unified Modelling Language,

Resource page

http://www.omg.org/uml

Probasco L.(2000) The Ten Essentials off RUP, the

essence off an effective development process,

TP- 177 9/00, Rational Software Corporation.

Rational Rose (2006) Rational Rose RT Homepage:

http://www-306.ibm.com/software/rational/

Rational Unified Process (2001). Best Practices for

Software Development Teams, Rational Software

White Paper, TP026B, Rev 11/01,

Rational Unified Process (2006).Rational Method

Composer, Homepage http://www-

306.ibm.com/software/awdtools/rmc

Real-time Studio (2004) ARTiSAN Software Tools,

Inc. Homepage: http://www.artisansw.com/,

Rhapsody and Rhapsody System Designer (2006).

i-Logic, http://www.ilogix.com/

Visual Paradigm for the Unified Modeling Language

(2006) Homepage: http://www.visual-

paradigm.com

http://www.omg.org/uml
http://www.artisansw.com/

